40 research outputs found

    The Medical Research Council (UK)/Uganda Virus Research Institute Uganda Research Unit on AIDS--'25 years of research through partnerships'.

    Get PDF
    For the past 25 years, the Medical Research Council/Uganda Virus Research Institute Uganda Research Unit on AIDS has conducted research on HIV-1, coinfections and, more recently, on non-communicable diseases. Working with various partners, the research findings of the Unit have contributed to the understanding and control of the HIV epidemic both in Uganda and globally, and informed the future development of biomedical HIV interventions, health policy and practice. In this report, as we celebrate our silver jubilee, we describe some of these achievements and the Unit's multidisciplinary approach to research. We also discuss the future direction of the Unit; an exemplar of a partnership that has been largely funded from the north but led in the south

    Impact of HIV Infection and Kaposi Sarcoma on Human Herpesvirus-8 Mucosal Replication and Dissemination in Uganda

    Get PDF
    Kaposi sarcoma (KS) is the leading cause of cancer in Uganda and occurs in people with and without HIV. Human herpesvirus-8 (HHV-8) replication is important both in transmission of HHV-8 and progression to KS. We characterized the sites and frequency of HHV-8 detection in Ugandans with and without HIV and KS.Participants were enrolled into one of four groups on the basis of HIV and KS status (HIV negative/KS negative, HIV positive/KS negative, HIV negative/KS positive, and HIV positive/KS positive). Participants collected oral swabs daily and clinicians collected oral swabs, anogenital swabs, and plasma samples weekly over 4 weeks. HHV-8 DNA at each site was quantified by polymerase chain reaction (PCR).78 participants collected a total of 2063 orals swabs and 358 plasma samples. Of these, 428 (21%) oral swabs and 96 (27%) plasma samples had detectable HHV-8 DNA. HHV-8 was detected more frequently in both the oropharynx of persons with KS (24 (57%) of 42 persons with KS vs. 8 (22%) of 36 persons without, p = 0.002) and the peripheral blood (30 (71%) of 42 persons with KS vs. 8 (22%) of 36 persons without, p<0.001). In a multivariate model, HHV-8 viremia was more frequent among men (IRR = 3.3, 95% CI = 1.7-6.2, p<0.001), persons with KS (IRR = 3.9, 95% CI = 1.7-9.0, p = 0.001) and persons with HIV infection (IRR = 1.7, 95% CI = 1.0-2.7, p = 0.03). Importantly, oral HHV-8 detection predicted the subsequent HHV-8 viremia. HHV-8 viremia was significantly more common when HHV-8 DNA was detected from the oropharynx during the week prior than when oral HHV-8 was not detected (RR = 3.3, 95% CI = 1.8-5.9 p<0.001). Genital HHV-8 detection was rare (9 (3%) of 272 swabs).HHV-8 detection is frequent in the oropharynx and peripheral blood of Ugandans with endemic and epidemic KS. Replication at these sites is highly correlated, and viremia is increased in men and those with HIV. The high incidence of HHV-8 replication at multiple anatomic sites may be an important factor leading to and sustaining the high prevalence of KS in Uganda

    Seasonal pulses of Marburg virus circulation in juvenile Rousettus aegyptiacus bats coincide with periods of increased risk of human infection

    Get PDF
    Marburg virus (family Filoviridae) causes sporadic outbreaks of severe hemorrhagic disease in sub-Saharan Africa. Bats have been implicated as likely natural reservoir hosts based most recently on an investigation of cases among miners infected in 2007 at the Kitaka mine, Uganda, which contained a large population of Marburg virus-infected Rousettus aegyptiacus fruit bats. Described here is an ecologic investigation of Python Cave, Uganda, where an American and a Dutch tourist acquired Marburg virus infection in December 2007 and July 2008. More than 40,000 R. aegyptiacus were found in the cave and were the sole bat species present. Between August 2008 and November 2009, 1,622 bats were captured and tested for Marburg virus. Q-RT-PCR analysis of bat liver/spleen tissues indicated ,2.5% of the bats were actively infected, seven of which yielded Marburg virus isolates. Moreover, Q-RT-PCR-positive lung, kidney, colon and reproductive tissues were found, consistent with potential for oral, urine, fecal or sexual transmission. The combined data for R. aegyptiacus tested from Python Cave and Kitaka mine indicate low level horizontal transmission throughout the year. However, Q-RT-PCR data show distinct pulses of virus infection in older juvenile bats (,six months of age) that temporarily coincide with the peak twiceyearly birthing seasons. Retrospective analysis of historical human infections suspected to have been the result of discrete spillover events directly from nature found 83% (54/65) events occurred during these seasonal pulses in virus circulation, perhaps demonstrating periods of increased risk of human infection. The discovery of two tags at Python Cave from bats marked at Kitaka mine, together with the close genetic linkages evident between viruses detected in geographically distant locations, are consistent with R. aegyptiacus bats existing as a large meta-population with associated virus circulation over broad geographic ranges. These findings provide a basis for developing Marburg hemorrhagic fever risk reduction strategies.The Department of Health and Human Serviceshttp://www.plospathogens.or

    Afri-Can Forum 2

    Full text link

    Recombination in human herpesvirus-8 strains from Uganda and evolution of the K15 gene

    No full text
    Human herpesvirus-8 (HHV-8) is believed to be the aetiological agent of Kaposi's sarcoma (KS). KS accounts for half the reported cancer cases in Uganda, and occurs in endemic and epidemic [human immunodeficiency virus (HIV)-associated] forms. We confirmed a high prevalence (74%) of HHV-8 antibodies in 114 HIV-negative Ugandan blood donors, and characterized the genomes of HHV-8 strains present in 30 adult Ugandan KS patients. Phylogenetic analysis of the uniquely variable K1 gene indicated that the majority of KS patients were infected by the B subtype of HHV-8, several by the A5 subtype, and one by a variant of the C subtype. Sequence analysis of nine strains at several other genome loci spaced out across the genome indicated that five are recombinants between subtypes when considered independently of previously published definitions of parental (unrecombined) genotypes. When previously published parental genotypes were taken into account, seven of the nine strains appeared to be recombinants. Analysis of the K15 gene, which exists in HHV-8 in two highly diverged alleles, indicated that the P allele predominates, with only a single strain bearing the M allele. Divergence between the M allele in the latter strain and that in the previously sequenced BC1 strain is at least as great as that between representatives of the P allele. This indicates that introduction of the M allele into extant HHV-8 subtypes did not occur by a single, relatively recent recombination event as was concluded from a previous study in which very limited variation in the M allele was reported
    corecore