8 research outputs found

    Association between fasting plasma glucose and high-sensitivity C-reactive protein: gender differences in a Japanese community-dwelling population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High sensitivity C-reactive protein (hsCRP) is an acute phase reactant and a sensitive marker of inflammation. Hyperglycemia can potentially promote the production of CRP. The aim of this study was to determine whether increased fasting plasma glucose (FPG) levels are associated with elevated hsCRP concentrations by gender.</p> <p>Methods</p> <p>We recruited 822 men (mean age, 61 ± 14 years) and 1,097 women (63 ± 12 years) during their annual health examination from a single community. We cross-sectionally examined whether FPG levels are associated with hsCRP concentrations, and whether this association is independent of gender, body mass index (BMI) and other components of the metabolic syndrome.</p> <p>Results</p> <p>In women only, hsCRP increased significantly and progressively with increasing FPG (r = 0.169, P < 0.001). The stepwise multiple linear regression analysis using hsCRP as an objective variable, adjusted for confounding factors as explanatory variables, showed that FPG as well as age, BMI, systolic blood pressure, high-density lipoprotein cholesterol (HDL-C), uric acid, and high molecular weight adiponectin were significantly associated with hsCRP in women, but not in men. There was significant gender interaction, and an increase in hsCRP levels that was greater in women with BMI ≥ 25 kg/m<sup>2 </sup>and higher FPG than in men.</p> <p>Conclusions</p> <p>These results suggested that hsCRP levels increase continuously across the FPG spectrum starting from the lowest FPG in both men and women. However, increase in hsCRP levels was greater in women than men.</p

    High-sensitivity c-reactive protein and gamma-glutamyl transferase levels are synergistically associated with metabolic syndrome in community-dwelling persons

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metabolic syndrome (MetS) is associated with an increased risk of major cardiovascular events. Increased high-sensitivity C-reactive protein (hsCRP) levels are associated with MetS and its components. Changes in gamma-glutamyl transferase (GGT) levels in response to oxidative stress are also associated with MetS, and the levels could be modulated by hsCRP.</p> <p>Methods</p> <p>From a single community, we recruited 822 men (mean age, 61 ± 14 years) and 1,097 women (63 ± 12 years) during their annual health examination. We investigated whether increased hsCRP and GGT levels are synergistically associated with MetS and insulin resistance evaluated by Homeostasis of model assessment of insulin resistance (HOMA-IR).</p> <p>Results</p> <p>Of these subjects, 141 men (17.2%) and 170 women (15.5%) had MetS. Participants with MetS had a higher hsCRP and GGT level than those without MetS in both genders, and the HOMA-IR increased significantly in correlation with an increase in hsCRP and GGT. In men, the adjusted odds ratios (95% confidence interval) for MetS across tertiles of hsCRP and GGT were 1.00, 1.69 (1.01-2.80), and 2.13 (1.29-3.52), and 1.00, 3.26 (1.84-5.78) and 6.11 (3.30-11.3), respectively. In women, the respective corresponding values were 1.00, 1.54 (0.92-2.60), and 3.08 (1.88-5.06), and 1.00, 1.70 (1.04-2.79) and 2.67 (1.66-4.30). The interaction between increased hsCRP and GGT was a significant and independent determinant for MetS and insulin resistance in both genders.</p> <p>Conclusions</p> <p>These results suggested that higher CRP and GGT levels were synergistically associated with MetS and insulin resistance, independently of other confounding factor in the general population.</p

    Low-density lipoprotein cholesterol to high-density lipoprotein cholesterol ratio is the best surrogate marker for insulin resistance in non-obese Japanese adults

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of the present study was to examine how lipid profiles are associated with insulin resistance in Japanese community-dwelling adults.</p> <p>Methods</p> <p>This cross-sectional study included 614 men aged 58 ± 14 (mean ± standard deviation; range, 20-89) years and 779 women aged 60 ± 12 (range, 21-88) years. The study sample were 1,042 (74.8%) non-obese (BMI < 25.0 kg/m<sup>2</sup>) and 351 (25.2%) overweight (BMI ≥ 25 kg/m<sup>2</sup>) subjects. Insulin resistance was defined by homeostasis model assessment of insulin resistance (HOMA-IR) of at least 2.5. The areas under the curve (AUC) of the receiver operating characteristic curves (ROC) were used to compare the power of these serum markers.</p> <p>Results</p> <p>In non-obese subjects, the best marker of insulin resistance was low-density lipoprotein cholesterol (LDL-C)/high-density lipoprotein cholesterol (HDL-C) ratio of 0.74 (95% confidence interval (CI), 0.66-0.80). The HDL-C, triglyceride (TG)/HDL-C ratio, and non-HDL-C also discriminated insulin resistance, as the values for AUC were 0.31 (95% CI, 0.24-0.38), 0.69 (95% CI, 0.62-0.75) and 0.69 (95% CI, 0.62-0.75), respectively. In overweight subjects, the AUC for TG and TG/HDL-C ratio were 0.64 (0.58-0.71) and 0.64 (0.57-0.70), respectively. The optimal cut-off point to identifying insulin resistance for these markers yielded the following values: TG/HDL-C ratio of ≥1.50 and LDL-C/HDL-C ratio of ≥2.14 in non-obese subjects, and ≥2.20, ≥2.25 in overweight subjects. In non-obese subjects, the positive likelihood ratio was greatest for LDL-C/HDL-C ratio.</p> <p>Conclusion</p> <p>In non-obese Japanese adults, LDL-C/HDL-C ratio may be the best reliable marker of insulin resistance.</p
    corecore