40 research outputs found

    Interconversion of Two GDP-Bound Conformations and Their Selection in an Arf-Family Small G Protein

    Get PDF
    SummaryADP-ribosylation factor (Arf) and other Arf-family small G proteins participate in many cellular functions via their characteristic GTP/GDP conformational cycles, during which a nucleotide∗Mg2+-binding site communicates with a remote N-terminal helix. However, the conformational interplay between the nucleotides, the helix, the protein core, and Mg2+ has not been fully delineated. Herein, we report a study of the dynamics of an Arf-family protein, Arl8, under various conditions by means of NMR relaxation spectroscopy. The data indicated that, when GDP is bound, the protein core, which does not include the N-terminal helix, reversibly transition between an Arf-family GDP form and another conformation that resembles the Arf-family GTP form. Additionally, we found that the N-terminal helix and Mg2+, respectively, stabilize the aforementioned former and latter conformations in a population-shift manner. Given the dynamics of the conformational changes, we can describe the Arl8 GTP/GDP cycle in terms of an energy diagram

    Identification of glycosylation genes and glycosylated amino acids of flagellin in Pseudomonas syringae pv. tabaci

    Get PDF
    A glycosylation island is a genetic region required for glycosylation. The glycosylation island of flagellin in Pseudomonas syringae pv. tabaci 6605 consists of three orfs: orf1, orf2 and orf3. Orf1 and orf2 encode putative glycosyltransferases, and their deletion mutants, Delta orf1 and Delta orf2, exhibit deficient flagellin glycosylation or produce partially glycosylated flagellin respectively. Digestion of glycosylated flagellin from wild-type bacteria and non-glycosylated flagellin from Delta orf1 mutant using aspartic N-peptidase and subsequent HPLC analysis revealed candidate glycosylated amino acids. By generation of site-directed Ser/Ala-substituted mutants, all glycosylated amino acid residues were identified at positions 143, 164, 176, 183, 193 and 201. Matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry (MS) analysis revealed that each glycan was about 540 Da. While all glycosylation-defective mutants retained swimming ability, swarming ability was reduced in the Delta orf1, Delta orf2 and Ser/Ala-substituted mutants. All glycosylation mutants were also found to be impaired in the ability to adhere to a polystyrene surface and in the ability to cause disease in tobacco. Based on the predicted tertiary structure of flagellin, S176 and S183 are expected to be located on most external surface of the flagellum. Thus the effect of Ala-substitution of these serines is stronger than that of other serines. These results suggest that glycosylation of flagellin in P. syringae pv. tabaci 6605 is required for bacterial virulence. It is also possible that glycosylation of flagellin may mask elicitor function of flagellin molecule

    The dual origin of the peripheral olfactory system: placode and neural crest

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The olfactory epithelium (OE) has a unique capacity for continuous neurogenesis, extending axons to the olfactory bulb with the assistance of olfactory ensheathing cells (OECs). The OE and OECs have been believed to develop solely from the olfactory placode, while the neural crest (NC) cells have been believed to contribute only the underlying structural elements of the olfactory system. In order to further elucidate the role of NC cells in olfactory development, we examined the olfactory system in the transgenic mice Wnt1-Cre/Floxed-EGFP and P0-Cre/Floxed-EGFP, in which migrating NC cells and its descendents permanently express GFP, and conducted transposon-mediated cell lineage tracing studies in chick embryos.</p> <p>Results</p> <p>Examination of these transgenic mice revealed GFP-positive cells in the OE, demonstrating that NC-derived cells give rise to OE cells with morphologic and antigenic properties identical to placode-derived cells. OECs were also positive for GFP, confirming their NC origin. Cell lineage tracing studies performed in chick embryos confirmed the migration of NC cells into the OE. Furthermore, spheres cultured from the dissociated cells of the olfactory mucosa demonstrated self-renewal and trilineage differentiation capacities (neurons, glial cells, and myofibroblasts), demonstrating the presence of NC progenitors in the olfactory mucosa.</p> <p>Conclusion</p> <p>Our data demonstrates that the NC plays a larger role in the development of the olfactory system than previously believed, and suggests that NC-derived cells may in part be responsible for the remarkable capacity of the OE for neurogenesis and regeneration.</p

    NF-kB阻害剤デヒドロキシメチルエポキシキノマイシン(DHMEQ)の鍵中間体および新規類縁体の合成

    Get PDF
    The synthesis of the key intermedicate of dehydroxymethylepoxyquinomicin (DHMEQ),a potent and specific NF-kB inhibitor,was achieved. The method involved the following crucial steps:i) direct construction of quinone functionality by degradative oxidation using hypervalent iodine (III) reagents such as (diacetoxyiodo) benzene (PIDA) and [bis(trifluoroacetoxy)iodo]beneze (PIFA);ii) regioselective epoxidation of quinone having a carbamoyl group; and iii) regio- and stereoselective reduction of an epoxyquinone moiety. In addition,a novel DHMEQ analog was synthesized by applying this approach

    A Host Small GTP-binding Protein ARL8 Plays Crucial Roles in Tobamovirus RNA Replication

    Get PDF
    Tomato mosaic virus (ToMV), like other eukaryotic positive-strand RNA viruses, replicates its genomic RNA in replication complexes formed on intracellular membranes. Previous studies showed that a host seven-pass transmembrane protein TOM1 is necessary for efficient ToMV multiplication. Here, we show that a small GTP-binding protein ARL8, along with TOM1, is co-purified with a FLAG epitope-tagged ToMV 180K replication protein from solubilized membranes of ToMV-infected tobacco (Nicotiana tabacum) cells. When solubilized membranes of ToMV-infected tobacco cells that expressed FLAG-tagged ARL8 were subjected to immunopurification with anti-FLAG antibody, ToMV 130K and 180K replication proteins and TOM1 were co-purified and the purified fraction showed RNA-dependent RNA polymerase activity that transcribed ToMV RNA. From uninfected cells, TOM1 co-purified with FLAG-tagged ARL8 less efficiently, suggesting that a complex containing ToMV replication proteins, TOM1, and ARL8 are formed on membranes in infected cells. In Arabidopsis thaliana, ARL8 consists of four family members. Simultaneous mutations in two specific ARL8 genes completely inhibited tobamovirus multiplication. In an in vitro ToMV RNA translation-replication system, the lack of either TOM1 or ARL8 proteins inhibited the production of replicative-form RNA, indicating that TOM1 and ARL8 are required for efficient negative-strand RNA synthesis. When ToMV 130K protein was co-expressed with TOM1 and ARL8 in yeast, RNA 5′-capping activity was detected in the membrane fraction. This activity was undetectable or very weak when the 130K protein was expressed alone or with either TOM1 or ARL8. Taken together, these results suggest that TOM1 and ARL8 are components of ToMV RNA replication complexes and play crucial roles in a process toward activation of the replication proteins' RNA synthesizing and capping functions

    Molecular Structure of the GARP Family of Plant Myb-Related DNA Binding Motifs of the Arabidopsis Response Regulators

    No full text
    The B motif is a signature of type-B response regulators (ARRs) involved in His-to-Asp phosphorelay signal transduction systems in Arabidopsis. Homologous motifs occur widely in the GARP family of plant transcription factors. To gain general insight into the structure and function of B motifs (or GARP motifs), we characterized the B motif derived from a representative ARR, ARR10, which led to a number of intriguing findings. First, the B motif of ARR10 (named ARR10-B and extending from Thr-179 to Ser-242) possesses a nuclear localization signal, as indicated by the intracellular localization of a green fluorescent protein–ARR10-B fusion protein in onion epidermal cells. Second, the purified ARR10-B molecule binds specifically in vitro to DNA with the core sequence AGATT. This was demonstrated by several in vitro approaches, including PCR-assisted DNA binding site selection, gel retardation assays, and surface plasmon resonance analysis. Finally, the three-dimensional structure of ARR10-B in solution was determined by NMR spectroscopy, showing that it contains a helix-turn-helix structure. Furthermore, the mode of interaction between ARR10-B and the target DNA was assessed extensively by NMR spectroscopy. Together, these results lead us to propose that the mechanism of DNA recognition by ARR10-B is essentially the same as that of homeodomains. We conclude that the B motif is a multifunctional domain responsible for both nuclear localization and DNA binding and suggest that these insights could be applicable generally to the large GARP family of plant transcription factors
    corecore