429 research outputs found

    An ytterbium quantum gas microscope with narrow-line laser cooling

    Get PDF
    We demonstrate site-resolved imaging of individual bosonic 174Yb^{174}\mathrm{Yb} atoms in a Hubbard-regime two-dimensional optical lattice with a short lattice constant of 266 nm. To suppress the heating by probe light with the 1S0^1S_0-1P1^1P_1 transition of the wavelength λ\lambda = 399 nm for high-resolution imaging and preserve atoms at the same lattice sites during the fluorescence imaging, we simultaneously cool atoms by additionally applying narrow-line optical molasses with the 1S0^1S_0-3P1^3P_1 transition of the wavelength λ\lambda = 556 nm. We achieve a low temperature of $T = 7.4(1.3)\ \mu\mathrm{K}$, corresponding to a mean oscillation quantum number along the horizontal axes of 0.22(4) during imaging process. We detect on average 200 fluorescence photons from a single atom within 400 ms exposure time, and estimate the detection fidelity of 87(2)%. The realization of a quantum gas microscope with enough fidelity for Yb atoms in a Hubbard-regime optical lattice opens up the possibilities for studying various kinds of quantum many-body systems such as Bose and Fermi gases, and their mixtures, and also long-range-interacting systems such as Rydberg states.Comment: 14 pages, 6 figure

    Nucleosynthesis in novae: experimental progress in the determination of nuclear reaction rates

    Full text link
    The sources of nuclear uncertainties in nova nucleosynthesis have been identified using hydrodynamical nova models. Experimental efforts have followed and significantly reduced those uncertainties. This is important for the evaluation of nova contribution to galactic chemical evolution, gamma--ray astronomy and possibly presolar grain studies. In particular, estimations of expected gamma-ray fluxes are essential for the planning of observations with existing or future satellites.Comment: Invited contribution to the "Origin of Matter and Evolution of Galaxies" conference (OMEG07) with additional and color figure

    Explosions inside Ejecta and Most Luminous Supernovae

    Full text link
    The extremely luminous supernova SN2006gy is explained in the same way as other SNIIn events: light is produced by a radiative shock propagating in a dense circumstellar envelope formed by a previous weak explosion. The problems in the theory and observations of multiple-explosion SNe IIn are briefly reviewed.Comment: 9 pages, 6 figures, LateX aipproc.cls. A bit more details and color added to Fig.3. The 10th International Symposium on Origin of Matter and Evolution of Galaxies (OMEG07), Sapporo, Japan, December 200

    Recent Efforts in Data Compilations for Nuclear Astrophysics

    Full text link
    Some recent efforts in compiling data for astrophysical purposes are introduced, which were discussed during a JINA-CARINA Collaboration meeting on "Nuclear Physics Data Compilation for Nucleosynthesis Modeling" held at the ECT* in Trento/ Italy from May 29th- June 3rd, 2007. The main goal of this collaboration is to develop an updated and unified nuclear reaction database for modeling a wide variety of stellar nucleosynthesis scenarios. Presently a large number of different reaction libraries (REACLIB) are used by the astrophysics community. The "JINA Reaclib Database" on http://www.nscl.msu.edu/\~nero/db/ aims to merge and fit the latest experimental stellar cross sections and reaction rate data of various compilations, e.g. NACRE and its extension for Big Bang nucleosynthesis, Caughlan and Fowler, Iliadis et al., and KADoNiS. The KADoNiS (Karlsruhe Astrophysical Database of Nucleosynthesis in Stars, http://nuclear-astrophysics.fzk.de/kadonis) project is an online database for neutron capture cross sections relevant to the s process. The present version v0.2 is already included in a REACLIB file from Basel university (http://download.nucastro.org/astro/reaclib). The present status of experimental stellar (n,γ)(n,\gamma) cross sections in KADoNiS is shown. A "high priority list" for measurements and evaluations for light charged-particle reactions set up by the JINA-CARINA collaboration is presented. The central web access point to submit and evaluate new data is provided by the Oak Ridge group via the http://www.nucastrodata.org homepage. "Workflow tools" aim to make the evaluation process transparent and allow users to follow the progress.Comment: Proceedings 10th Int. Symp. on Origin of Matter and Evolution of Galaxies OMEG07, Sapporo/ Japan, December 4-7 200

    Investigating the gaze control ability of VALORANT players using a Python based tool

    Full text link
    The current study investigated the gaze movements of FPS gamers in actual game environments. We developed a low-cost analysis tool using Python to identify gaze movements in real-world gaming environments. In Experiment 1, 11 middle-skilled and ten high-skilled FPS gamers performed a task under the experimental condition. Gaze position, reaction time, and accuracy were calculated during the task. Reaction time exhibited a significant positive correlation with task accuracy, suggesting that speed and accuracy were associated with higher game performance. The middle-skilled gamers had a significantly wider horizontal gaze distribution than the high-skilled gamers, and gaze distribution and reaction time showed a negative correlation. These results suggested that high-skilled players utilize peripheral vision during gameplay. In Experiment 2, 15 middle-skilled and 12 high-skilled FPS gamers performed an actual FPS game match. The gaze distribution, kill/death/assist ratio (KDA), and percentage of gaze on game information were calculated. In experiment 2, gaze locations in less important areas were positively correlated with KDA. Thus, performance was determined by the important areas where the gaze was focused rather than by the coordination of gaze position alone. Therefore, a broader range of environments is necessary to comprehend the superior performance of FPS gamers.Comment: 8 Pages, 8 figures, submitted in IEEE Transactions on Game

    The Dichotomy of the Halo of the Milky Way

    Full text link
    We summarize evidence that the halo of the Milky Way comprises two different, and broadly overlapping, stellar components. The two structures exhibit different chemical compositions, spatial distributions, and kinematics. These results were obtained through an analysis of more than 20,000 calibration stars from the Sloan Digital Sky Survey (SDSS). The duality of the stellar halo directly impacts galaxy formation models, for the Milky Way and other large spirals.Comment: 6 pages, 4 figures, to appear in Proceedings of the OMEG07 Conference, held in December 200

    The r-Process in Supersonic Neutrino-Driven Winds: The Roll of Wind Termination Shock

    Full text link
    Recent hydrodynamic studies of core-collapse supernovae imply that the neutrino-heated ejecta from a nascent neutron star develops to supersonic outflows. These supersonic winds are influenced by the reverse shock from the preceding supernova ejecta, forming the wind termination shock. We investigate the effects of the termination shock in neutrino-driven winds and its roll on the r-process. Supersonic outflows are calculated with a semi-analytic neutrino-driven wind model. Subsequent termination-shocked, subsonic outflows are obtained by applying the Rankine-Hugoniot relations. We find a couple of effects that can be relevant for the r-process. First is the sudden slowdown of the temperature decrease by the wind termination. Second is the entropy jump by termination-shock heating, up to several 100NAk. Nucleosynthesis calculations in the obtained winds are performed to examine these effects on the r-process. We find that 1) the slowdown of the temperature decrease plays a decisive roll to determine the r-process abundance curves. This is due to the strong dependences of the nucleosynthetic path on the temperature during the r-process freezeout phase. Our results suggest that only the termination-shocked winds with relatively small shock radii (~500km) are relevant for the bulk of the solar r-process abundances (A~100-180). The heaviest part in the solar r-process curve (A~180-200), however, can be reproduced both in shocked and unshocked winds. These results may help to constrain the mass range of supernova progenitors relevant for the r-process. We find, on the other hand, 2) negligible roles of the entropy jump on the r-process. This is a consequence that the sizable entropy increase takes place only at a large shock radius (~10,000km) where the r-process has already ceased.Comment: 11 pages, 7 figures, submitted to ApJ, revised following referee's comments,Accepted for publication in Ap
    corecore