41 research outputs found

    Exact and local compression of quantum bipartite states

    Full text link
    We study an exact local compression of a quantum bipartite state; that is, applying local quantum operations to the state to reduce the dimensions of Hilbert spaces while perfectly maintaining the correlation. We provide a closed formula for calculating the minimal achievable dimensions, provided as a minimization of the Schmidt rank of a particular pure state constructed from that state. Numerically more tractable upper and lower bounds of the rank were also obtained. Subsequently, we consider the exact compression of quantum channels as an application. Using this method, a post-processing step that can reduce the output dimensions while retaining information on the output of the original channel can be analyzed.Comment: 9 pages, 1figure, comments are welcom

    Deformations of the Boundary Theory of the Square Lattice AKLT Model

    Get PDF
    The 1D AKLT model is a paradigm of antiferromagnetism, and its ground state exhibits symmetry-protected topological order. On a 2D lattice, the AKLT model has recently gained attention because it too displays symmetry-protected topological order, and its ground state can act as a resource state for measurement-based quantum computation. While the 1D model has been shown to be gapped, it remains an open problem to prove the existence of a spectral gap on the 2D square lattice, which would guarantee the robustness of the resource state. Recently, it has been shown that one can deduce this spectral gap by analyzing the model's boundary theory via a tensor network representation of the ground state. In this work, we express the boundary state of the 2D AKLT model in terms of a classical loop model, where loops, vertices, and crossings are each given a weight. We use numerical techniques to sample configurations of loops and subsequently evaluate the boundary state and boundary Hamiltonian on a square lattice. As a result, we evidence a spectral gap in the square lattice AKLT model. In addition, by varying the weights of the loops, vertices, and crossings, we indicate the presence of three distinct phases exhibited by the classical loop model

    Deformations of the boundary theory of the square-lattice AKLT model

    Get PDF
    The one-dimensional (1D) Affleck-Kennedy-Lieb-Tasaki (AKLT) model is a paradigm of antiferromagnetism, and its ground state exhibits symmetry-protected topological order. On a two-dimensional (2D) lattice, the AKLT model has recently gained attention because it too displays symmetry-protected topological order, and its ground state can act as a resource state for measurement-based quantum computation. While the 1D model has been shown to be gapped, it remains an open problem to prove the existence of a spectral gap on the 2D square lattice, which would guarantee the robustness of the resource state. Recently, it has been shown that one can deduce this spectral gap by analyzing the model's boundary theory via a tensor network representation of the ground state. In this work, we express the boundary state of the 2D AKLT model in terms of a classical loop model, where loops, vertices, and crossings are each given a weight. We use numerical techniques to sample configurations of loops and subsequently evaluate the boundary state and boundary Hamiltonian on a square lattice. As a result, we evidence a spectral gap in the square-lattice AKLT model. In addition, by varying the weights of the loops, vertices, and crossings, we indicate the presence of three distinct phases exhibited by the classical loop model

    Toy model of boundary states with spurious topological entanglement entropy

    Get PDF
    Topological entanglement entropy has been extensively used as an indicator of topologically ordered phases. We study the conditions needed for two-dimensional topologically trivial states to exhibit spurious contributions that contaminate topological entanglement entropy. We show that, if the state at the boundary of a subregion is a stabilizer state, then it has a nonzero spurious contribution to the region if and only if the state is in a nontrivial one-dimensional G₁×G₂ symmetry-protected-topological (SPT) phase under an on-site symmetry. However, we provide a candidate of a boundary state that has a nonzero spurious contribution but does not belong to any such SPT phase
    corecore