92 research outputs found

    Aromatic oil from lavender as an atopic dermatitis suppressant

    Get PDF
    In atopic dermatitis (AD), nerves are abnormally stretched near the surface of the skin, making it sensitive to itching. Expression of neurotrophic factor Artemin (ARTN) involved in such nerve stretching is induced by the xenobiotic response (XRE) to air pollutants and UV radiation products. Therefore, AD can be monitored by the XRE response. Previously, we established a human keratinocyte cell line stably expressing a NanoLuc reporter gene downstream of XRE. We found that 6-formylindolo[3,2-b]carbazole (FICZ), a tryptophan metabolite and known inducer of the XRE, increased reporter and Artemin mRNA expression, indicating that FICZ-treated cells could be a model for AD. Lavender essential oil has been used in folk medicine to treat AD, but the scientific basis for its use is unclear. In the present study, we investigated the efficacy of lavender essential oil and its major components, linalyl acetate and linalool, to suppress AD and sensitize skin using the established AD model cell line, and keratinocyte and dendritic cell activation assays. Our results indicated that lavender essential oil from L. angustifolia and linalyl acetate exerted a strong AD inhibitory effect and almost no skin sensitization. Our model is useful in that it can circumvent the practice of using animal studies to evaluate AD medicines

    Transcriptome Analyses of In Vitro Exercise Models by Clenbuterol Supplementation or Electrical Pulse Stimulation

    Get PDF
    Exercise has beneficial effects on human health and is affected by two different pathways; motoneuron and endocrine. For the advancement of exercise research, in vitro exercise models are essential. We established two in vitro exercise models using C2C12 myotubes; EPS (electrical pulse stimulation) for a motoneuron model and clenbuterol, a specific β2 adrenergic receptor agonist, treatment for an endocrine model. For clenbuterol treatment, we found that Ppargc1a was induced only in low glucose media (1 mg/mL) using a 1-h treatment of 30 ng/mL clenbuterol. Global transcriptional changes of clenbuterol treatment were analyzed by RNA-seq and gene ontology analyses and indicated that mitogenesis and the PI3K-Akt pathway were enhanced, which is consistent with the effects of exercise. Cxcl1 and Cxcl5 were identified as candidate myokines induced by adrenaline. As for the EPS model, we compared 1 Hz of 1-pulse EPS and 1 Hz of 10-pulse EPS for 24 h and determined Myh gene expressions. Ten-pulse EPS induced higher Myh2 and Myh7 expression. Global transcriptional changes of 10-pulse EPS were also analyzed using RNA-seq, and gene ontology analyses indicated that CaMK signaling and hypertrophy pathways were enhanced, which is also consistent with the effects of exercise. In this paper, we provided two transcriptome results of in vitro exercise models and these databases will contribute to advances in exercise research

    Synthesis and characterization of conductive flexible cellulose carbon nanohorn sheets for human tissue applications

    Get PDF
    Background Conductive sheets of cellulose and carbon nanomaterials and its human skin applications are an interesting research aspect as they have potential for applications for skin compatibility. Hence it is needed to explore the effects and shed light on these applications. Method To fabricate wearable, portable, flexible, lightweight, inexpensive, and biocompatible composite materials, carbon nanohorns (CNHs) and hydroxyethylcellulose (HEC) were used as precursors to prepare CNH-HEC (Cnh-cel) composite sheets. Cnh-cel sheets were prepared with different loading concentrations of CNHs (10, 20 50,100mg) in 200mg cellulose. To fabricate the bio-compatible sheets, a pristine composite of CNHs and HEC was prepared without any pretreatment of the materials. Results The obtained sheets possess a conductivity of 1.83x10(-10)S/m and bio-compatible with human skin. Analysis for skin-compatibility was performed for Cnh-cel sheets by h-CLAT in vitro skin sensitization tests to evaluate the activation of THP-1 cells. It was found that THP-1 cells were not activated by Cnh-cel; hence Cnh-cel is a safe biomaterial for human skin. It was also found that the composite allowed only a maximum loading of 100mg to retain the consistent geometry of free-standing sheets of m thickness. Since CNHs have a unique arrangement of aggregates (dahlia structure), the composite is homogeneous, as verified by transmission electron microscopy (TEM) and, scanning electron microscopy (SEM), and other functional properties investigated by Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR), conductivity measurement, tensile strength measurement, and skin sensitization. Conclusion It can be concluded that cellulose and CNHs sheets are conductive and compatible to human skin applications

    Effect of Cblin and celastrol on muscle atrophy

    Get PDF
    Two novel reagents, N-myristoylated Cbl-b inhibitory peptide (C14-Cblin) and celastrol, a quinone methide triterpene, are reported to be effective in preventing myotube atrophy. The combined effects of C14-Cblin and celastrol on rat L6 myotubes atrophy induced by 3D-clinorotation, a simulated microgravity model, was investigated in the present study. We first examined their effects on expression in atrogenes. Increase in MAFbx1/atrogin-1 and MuRF-1 by 3D-clinorotation was significantly suppressed by treatment with C14-Cblin or celastrol, but there was no additive effect of simultaneous treatment. However, celastrol significantly suppressed the upregulation of Cbl-b and HSP70 by 3D-clinorotation. Whereas 3D-clinorotation decreased the protein level of IRS-1 in L6 myotubes, C14-Cblin and celastrol inhibited the degradation of IRS-1. C14-Cblin and celastrol promoted the phosphorylation of FOXO3a even in microgravity condition. Simultaneous administration of C14-Cblin and celastrol had shown little additive effect in reversing the impairment of IGF-1 signaling by 3D-clinorotation. While 3D-clinorotation-induced marked oxidative stress in L6 myotubes, celastrol suppressed 3D-clinorotation-induced ROS production. Finally, the C14-Cblin and celastrol-treated groups were inhibited decrease in L6 myotube diameter and increased the protein content of slow-twitch MyHC cultured under 3D-clinorotation. The simultaneous treatment of C14-Cblin and celastrol additively prevented 3D-clinorotation-induced myotube atrophy than single treatment

    Adipose-derived regenerative cells exert beneficial effects on systemic responses following myocardial ischemia/reperfusion

    Get PDF
    Background: Acute coronary syndrome leads to systemic responses, including activation of the sympathetic nervous system, inflammation of atherosclerotic lesions, changes in metabolism and gene expressions of remote organs such as the spleen, bone marrow, and liver. Clinical trials and experimental studies have demonstrated that therapy with adipose-derived regenerative cells (ADRCs) attenuates myocardial ischemia/reperfusion (I/R) injury. The aim of this study is to investigate the role of ADRCs in regulating systemic reactions following I/R.Methods: Isolated ADRCs were obtained from green fluorescent protein transgenic male mice. Flow cytometry revealed that freshly isolated ADRCs expressed stem cell markers CD90 and Sca-1, and mesenchymal lineage marker. These cells exhibited multilineage differentiation into adipogenic, osteogenic, and chondrogenic lineages. Wild-type mice were subjected to 30 min of left ascending coronary ischemia and 24 h reperfusion. Freshly isolated ADRCs (105 cells) or vehicle (VEH), were administered intravenously through the tail at the time of reperfusion.Results: Compared to VEH, administration of ADRCs significantly reduced circulating troponin levels 24 h after I/R. Using quantitative real-time polymerase chain reaction analysis, the present study confirms that I/R-induced increase of factor X mRNA expression in the liver and was significantly inhibited by ADRCs compared to VEH. Administration of ADRCs significantly reduced the I/R-induced increase in serum levels of the proinflammatory cytokines tumor necrosis factor-alpha and interleukin-18 seen in mice receiving VEH.Conclusions: These results suggest that administration of ADRCs could have an important role in reducing myocardial injury and regulating the hepatic gene expression profile following I/R

    Effect of CYP3A5*3 genetic variant on the metabolism of direct-acting antivirals in vitro : a different effect on asunaprevir versus daclatasvir and beclabuvir

    Get PDF
    Direct-acting antivirals, asunaprevir (ASV), daclatasvir (DCV), and beclabuvir (BCV) are known to be mainly metabolized by CYP3A enzymes; however, the differences in the detailed metabolic activities of CYP3A4 and CYP3A5 on these drugs are not well clarified. The aim of the present study was to elucidate the relative contributions of CYP3A4 and CYP3A5 to the metabolism of ASV, DCV, and BCV, as well as the effect of CYP3A5*3 genetic variant in vitro. The amount of each drug and their major metabolites were determined using LC-MS/MS. Recombinant CYP3As and CYP3A5*3-genotyped human liver microsomes (CYP3A5 expressers or non-expressers) were used for the determination of their metabolic activities. The contribution of CYP3A5 to ASV metabolism was considerable compared to that of CYP3A4. Consistently, ASV metabolic activity in CYP3A5 expressers was higher than those in CYP3A5 non-expresser. Moreover, CYP3A5 expression level was significantly correlated with ASV metabolism. In contrast, these observations were not found in DCV and BCV metabolism. To our knowledge, this is the first study to directly demonstrate the effect of CYP3A5*3 genetic variants on the metabolism of ASV. The findings of the present study may provide basic information on ASV, DCV, and BCV metabolisms

    糖尿病患者における食事関連QOLの検討

    Get PDF
    Diet therapy constitutes the basis of treatment for diabetes mellitus. For its successful outcome, the patients' good compliance and persistence are essential. Thus, we have evaluated the diet-related quality of life (QOL) in diabetic patients to gain in

    Cellular immunity in children with successful immunoprophylactic treatment for mother-to-child transmission of hepatitis B virus

    Get PDF
    Background: The administration of hepatitis B immunoglobulin followed by hepatitis B vaccine can result in a protective efficacy of almost 90% in mother-to-child transmission of hepatitis B virus (HBV). However, little is known about immunity against HBV infection in children after immunoprophylactic treatment. We tried to assess the association between T-cell responses and viremia in children after successful prophylactic treatment. Methods: Thirteen children and their 8 HBV carrier mothers (8 families), who were positive for human leukocyte antigen (HLA)-A24, were enrolled in this study. All of the 13 children received immunoprophylactic treatment and became negative for hepatitis B surface antigen (HBsAg) after birth. HBV-specific cytotoxic T lymphocyte (CTL) responses were evaluated using IFNγ - enzyme-linked immunosorbent spot (ELISPOT) and major histocompatibility complex class I peptide pentamer assays. Serum HBV DNA was measured by real-time PCR. Results: Significant HBV-specific T-cell responses were detected in 2 (15%) of the 13 children by ELISPOT. However, the frequency of HLA-A24-HBV-specific CTLs was very low in both HBV carrier mothers and children using pentamers. Of the 13 children, 4 (31%) were positive for serum HBV DNA. However, the levels of serum HBV DNA were 100 copies/ml or less. One of the 2 children in whom significant HBV-specific CTL responses were detectable was positive for serum HBV DNA. Conclusions: HBV core and polymerase-specific T-cell responses were detected and a low-dose viremia was observed in children after successful immunoprophylaxis treatment. Although the presence of viremia was not related to HBV-specific T-cell responses, CTLs might play a role in the control of HBV infection in children born to HBsAg-positive mothers after immunoprophylactic treatment. </p
    corecore