5 research outputs found

    Modifying Mesoporous SBA-15 by a Microencapsulation Method in the Matrix of Sodium Alginate

    Get PDF
    The present work represents hydrogel as a composite based on sodium alginate and mesoporous SBA-15. The hydrogel was obtained by modifying mesoporous SBA-15 by a microencapsulation method of the SBA-15 in the sodium alginate matrix. The solution of CaCl2 provided a gelation complex of sodium alginate/SBA-15 in a rigid gel-like structure. The sodium alginate/SBA-15 hydrogels beads of about 3 mm diameter were prepared. Composite material was characterized by using powder X- ray diffraction, scanning electron microscopy and energy dispersive X-ray analysis. This composite material may have potential application in removal of metal ions ā€“ pollutants from aqueous solutions.XVI International Conference on Fundamental and Applied Aspects of Physical Chemistry : Proceedings, Vol. 2, September 26-30, Belgrad

    Synthesis and Application of Waste-Pet Glycolyzate Plastisizer for Recycled PVC Production

    No full text
    XVI International Conference on Fundamental and Applied Aspects of Physical Chemistry : book of abstracts, September 26-30, Belgrad

    Physico-chemical characterization of carbonized apricot kernel shell as precursor for activated carbon preparation in clean technology utilization

    No full text
    This paper investigates the ability of waste apricot (Prunus armeniaca) kernel shells (AKS) bio-char prepared by single-step carbonization process at 850 Ā°C (residence time of 1 h) for possible removal of toxic elements and organic micro-pollutants. The experiment that was performed as well as parameters used proved to be optimal for bio-char production as adsorbing medium, where last issue is validated by multiform material characterization techniques. It has been shown that the produced bio-char possess highly-porous morphology features, with large specific surface area (328.570 m2 gāˆ’1). The obtained product was characterized by various pore sizes (including super-micropores and mesopores with maximum pore size of 2.24 nm) structures. Preliminary results are indicated that obtained bio-char can shows increased affinity to possible adsorption of the small organic molecule contaminants upgraded by its physico-chemical properties. Cost estimation of AKS bio-char production substantiated its cost effectiveness and its good physical and chemical properties for future design in batch adsorption and regeneration tests. It was established that AKS produced bio-char was 2.5 times cheaper than the commercially available activated carbon. Bio-char exhibits promising removal performances for potential adsorption of heavy metal and organic micro-pollutants from wastewaters systems, as indicated by material textures and spectroscopy measurements. Ā© 2019 Elsevier Lt

    Synthesis and thermal properties of arylazo pyridone dyes

    No full text
    Thermal degradation properties of 5-(4-substitutedphenylazo)-3-amido-6-hydroxy-4-methyl-2-pyridones and 5-(4-substitutedphenylazo)-3-cyano-6-hydroxy-4-methyl-2-pyridones dyes, differing in electron withdrawing and electron donating substituents in para-position of diazo components were examined. The structure of the synthesized compounds has been confirmed by 1H NMR,13C NMR, FTIR, UVā€“Vis and XRD analysis techniques. The results obtained with thermogravimetric analysis (TGA) ā€“ derivative thermogravimetry (DTG) and differential thermal analysis (DTA) were combined with GC-mass spectral fragmentation to obtain thermal decomposition mechanism. Non-isothermal kinetics were monitored by application of TGA-DTG-DTA. For Kinetic behavior of the investigated dyes during their degradation in an inert atmosphere, Kissinger, Ozawa, Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS) isoconversional (model-free) methods were applied. It was found that different thermal stabilities of investigated dyes are the consequence of their different chemical structures, including diverse substituents. Ā© 201

    Irradiated fig pomace pyrochar as a promising and sustainable sterilized sorbent for water pollutant removal

    No full text
    Irradiated fig pomace pyrochar (IrrPyrFP) is noteworthy as a novel sterilized low-cost sorbent of BTEX, pesticides, and Pb2+ ions. It was produced by applying pyrolysis treatment followed by gamma irradiation modification in order to obtain a highly efficient and sterile sorbent. The characterization of fig pomace before and after pyrolysis, as well as before and after irradiation of the obtained pyrochar, was done using SEM, FTIR, and elemental analysis, while its sorption ability was tested through the removal of examined pollutants by batch sorption experiments. The obtained results suggest that IrrPyrFP could play a significant role in the control of environmental pollutants, as indicated by the maximum adsorption capacities: 42 mg gāˆ’1 for BTEX, 0.625 mg gāˆ’1 for malathion, 0.495 mg gāˆ’1 for chlorpyrifos and 255 mg gāˆ’1 for Pb2+. A kinetic study showed that the removal process by IrrPyrFP mainly follows pseudo 2nd kinetics order, while the sorption equilibriums were estimated using the Langmuir and Freundlich model. Overall, the findings of this work suggest that pyrolysis and activation by irradiation of waste biomass is a promising way to produce sterile efficient sorbents for waste-water treatment based on green chemistry. Additionally, the demonstrated application of fig pomace promotes the potential of using this biomass for continual and economical waste management in the rising fig industry
    corecore