23 research outputs found

    Compact Incoherent Multidimensional Imaging Systems Using Static Diffractive Coded Apertures

    Get PDF
    Incoherent holographic imaging technologies, in general, involve multiple optical components for beam splitting—combining and shaping—and in most cases, require an active optical device such as a spatial light modulator (SLM) for generating multiple phase-shifted holograms in time. The above requirements made the realization of holography-based products expensive, heavy, large, and slow. To successfully transfer the holography capabilities discussed in research articles to products, it is necessary to find methods to simplify holography architectures. In this book chapter, two important incoherent holography techniques, namely interference-based Fresnel incoherent correlation holography (FINCH) and interferenceless coded aperture correlation holography (I-COACH), have been successfully simplified in space and time using advanced manufacturing methods and nonlinear reconstruction, respectively. Both techniques have been realized in compact optical architectures using a single static diffractive optical element manufactured using lithography technologies. Randomly multiplexed diffractive lenses were manufactured using electron beam lithography for FINCH. A quasi-random lens and a mask containing a quasi-random array of pinholes were manufactured using electron beam lithography and photolithography, respectively, for I-COACH. In both cases, the compactification has been achieved without sacrificing the performances. The design, fabrication, and experiments of FINCH and I-COACH with static diffractive optical elements are presented in details

    Design and construction of high temperature thermoelectric power generator module characterisation system

    Get PDF
    Thermoelectric (TE) power generators (TEGs) are used to convert thermal energy directly into electrical energy. Therefore, thermoelectric power generation is believed to be among key technologies that will allow harnessing of large amounts of waste heat produced in steel and automotive industries. Currently used TEGs have limited conversion efficiency and don’t have capacity to penetrate these highly important industry sectors. Nevertheless, thermoelectric power generators are already successfully used for waste heat energy recovery or for pure power generation in some of the niche fields, such as space applications, scientific equipment and facilities, and lasers. With increasing demand on clean energy sources and advancing thermoelectric technology/materials, the use of thermoelectric devices is becoming more prominent owing to their long lifetime, high reliability, and silent operation

    Invasive and Non-Invasive Observation of Occluded Fast Transient Events: Computational Tools

    No full text
    Industrial processes involving thermal plasma such as cutting, welding, laser machining with ultra-short laser pulses (nonequilibrium conditions), high temperature melting using electrical discharge or ion-beams, etc., generate non-repeatable fast transient events which can reveal valuable information about the processes. In such industrial environments containing high temperature and radiation, it is often difficult to install conventional lens-based imaging windows and components to observe such events. In this study, we compare imaging requirements and performances with invasive and non-invasive modes when a fast transient event is occluded by a metal window consisting of numerous holes punched through it. Simulation studies were carried out for metal windows with different types of patterns, reconstructed for both invasive and non-invasive modes and compared. Sparks were generated by rapid electrical discharge behind a metal window consisting of thousands of punched through-holes and the time sequence was recorded using a high-speed camera. The time sequence was reconstructed with and without the spatio-spectral point spread functions and compared. Commented MATLAB codes are provided for both invasive and non-invasive modes of reconstruction

    Color Centers Enabled by Direct Femto-Second Laser Writing in Wide Bandgap Semiconductors

    No full text
    Color centers in silicon carbide are relevant for applications in quantum technologies as they can produce single photon sources or can be used as spin qubits and in quantum sensing applications. Here, we have applied femtosecond laser writing in silicon carbide and gallium nitride to generate vacancy-related color centers, giving rise to photoluminescence from the visible to the infrared. Using a 515 nm wavelength 230 fs pulsed laser, we produce large arrays of silicon vacancy defects in silicon carbide with a high localization within the confocal diffraction limit of 500 nm and with minimal material damage. The number of color centers formed exhibited power-law scaling with the laser fabrication energy indicating that the color centers are created by photoinduced ionization. This work highlights the simplicity and flexibility of laser fabrication of color center arrays in relevant materials for quantum applications

    Color Centers Enabled by Direct Femto-Second Laser Writing in Wide Bandgap Semiconductors

    Get PDF
    Color centers in silicon carbide are relevant for applications in quantum technologies as they can produce single photon sources or can be used as spin qubits and in quantum sensing applications. Here, we have applied femtosecond laser writing in silicon carbide and gallium nitride to generate vacancy-related color centers, giving rise to photoluminescence from the visible to the infrared. Using a 515 nm wavelength 230 fs pulsed laser, we produce large arrays of silicon vacancy defects in silicon carbide with a high localization within the confocal diffraction limit of 500 nm and with minimal material damage. The number of color centers formed exhibited power-law scaling with the laser fabrication energy indicating that the color centers are created by photoinducedionization. This work highlights the simplicity and flexibility of laser fabrication of color center arrays in relevant materials for quantum applications

    Single shot multispectral multidimensional imaging using chaotic waves

    No full text
    Abstract Multispectral imaging technology is a valuable scientific tool for various applications in astronomy, remote sensing, molecular fingerprinting, and fluorescence imaging. In this study, we demonstrate a single camera shot, lensless, interferenceless, motionless, non-scanning, space, spectrum, and time resolved five-dimensional incoherent imaging technique using tailored chaotic waves with quasi-random intensity and phase distributions. Chaotic waves can distinctly encode spatial and spectral information of an object in single self-interference intensity distribution. In this study, a tailored chaotic wave with a nearly pure phase function and lowest correlation noise is generated using a quasi-random array of pinholes. A unique sequence of signal processing techniques is applied to extract all possible spatial and spectral channels with the least entropy. The depth-wavelength reciprocity is exploited to see colour from depth and depth from colour and the physics of beam propagation is exploited to see at one depth by calibrating at another

    Enhanced Reconstruction of Spatially Incoherent Digital Holograms Using Synthetic Point Spread Holograms

    No full text
    Coded aperture imaging (CAI) methods offer multidimensional and multispectral imaging capabilities with minimal resources than what is needed in a lens-based direct imager. In the CAI method, the light diffracted from an object is modulated by a coded mask, and the resulting intensity distribution is recorded. Most of the CAI techniques involve two steps: the recording of the point spread function (PSF) and object intensity under identical conditions and with the same coded mask. The image of the object is reconstructed by computationally processing the PSF and object intensity. The above recording and reconstruction procedure precludes the introduction of special beam characteristics in imaging, such as a direct imager. In this study, a postprocessing approach is developed, where synthetic PSFs capable of introducing special beam characteristics when processed with the object intensity are generated using an iterative algorithm. The method is applied to generate edge-enhanced images in both CAI as well as Fresnel incoherent correlation holography methods
    corecore