3,774 research outputs found
Lie symmetry analysis and exact solutions of the quasi-geostrophic two-layer problem
The quasi-geostrophic two-layer model is of superior interest in dynamic
meteorology since it is one of the easiest ways to study baroclinic processes
in geophysical fluid dynamics. The complete set of point symmetries of the
two-layer equations is determined. An optimal set of one- and two-dimensional
inequivalent subalgebras of the maximal Lie invariance algebra is constructed.
On the basis of these subalgebras we exhaustively carry out group-invariant
reduction and compute various classes of exact solutions. Where possible,
reference to the physical meaning of the exact solutions is given. In
particular, the well-known baroclinic Rossby wave solutions in the two-layer
model are rediscovered.Comment: Extended version, 24 pages, 1 figur
Relaxation time spectrum of low-energy excitations in one- and two-dimensional materials with charge or spin density waves
The long-time thermal relaxation of (TMTTF)Br, SrCuO
and SrCaCuO single crystals at temperatures below 1 K
and magnetic field up to 10 T is investigated. The data allow us to determine
the relaxation time spectrum of the low energy excitations caused by the
charge-density wave (CDW) or spin-density wave (SDW). The relaxation time is
mainly determined by a thermal activated process for all investigated
materials. The maximum relaxation time increases with increasing magnetic
field. The distribution of barrier heights corresponds to one or two Gaussian
functions. The doping of SrCaCuO with Ca leads to
a drastic shift of the relaxation time spectrum to longer time. The maximum
relaxation time changes from 50 s (x = 0) to 3000 s (x = 12) at 0.1 K and 10 T.
The observed thermal relaxation at x=12 clearly indicates the formation of the
SDW ground state at low temperatures
Multi-photon effects in energy losses spectra
Effect of radiation of many photons by a single electron traversing a target
is discussed. When the summary energy of emitted photons (the energy losses
spectrum) is measured only, the photon spectrum is distorted comparing with the
photon spectrum in one interaction. Influence of this effect is discussed for
the cases (1) bremsstrahlung (described by Bethe-Heitler formula), (2) the
strong Landau-Pomeranchuk-Migdal effect and (3) transition radiation.
Qualitative picture of the phenomenon is discussed in detail. Comparison with
the recent SLAC experiment in relatively thick target (2.7% of the radiation
length), where the effect of emission of many photons by a projectile is very
essential, shows perfect agreement of the theory and data.Comment: LaTeX2.09, 19 pages, 5 PostScript figure
Theoretical model of structure-dependent conductance crossover in disordered carbon
We analyze the effects of sp^2/sp^3 bond-aspect ratio on the transport
properties of amorphous carbon quasi-1D structures where structural disorder
varies in a very non-linear manner with the effective bandgap. Using a
tight-binding approach the calculated electron transmission showed a high
probability over a wide region around the Fermi-level for sp^2-rich carbon and
also distinct peaks close to the band edges for sp^3-rich carbon structures.
This model shows a sharp rise of the structure resistance with the increase of
sp^3C % followed by saturation in the wide bandgap regime for carbon
superlattice-like structures and suggests the tuneable characteristic time of
carbon-based devices.Comment: 6 pages, 6 figure
Tolerance of human embryonic stem cell derived islet progenitor cells to vitrification-relevant solutions
We have previously shown that human embryonic stem cell derived islet progenitors (hESC-IPs), encapsulated inside an immunoprotective device, mature in vivo and ameliorate diabetes in mice. The ability to cryopreserve hESC-IPs preloaded in these devices would enhance consistency and portability, but traditional ‘slow freezing’ methods did not work well for cells encapsulated in the device. Vitrification is an attractive alternative cryopreservation approach. To assess the tolerance of hESC-IPs to vitrification relevant conditions, we here are reporting cell survival following excursions in tonicity, exposure to fifteen 40% v/v combinations of 4 cryoprotectants, and varied methods for addition and elution. We find that 78% survival is achieved using a protocol in which cells are abruptly (in one step) exposed to a solution containing 10% v/v each dimethyl sulfoxide, propylene glycol, ethylene glycol, and glycerol on ice, and eluted step-wise with DPBS + 0.5 M sucrose at 37 °C. Importantly, the hESC-IPs also maintain expression of the critical islet progenitor markers PDX-1, NKX6.1, NGN3 and NEURO-D1. Thus, hESC-IPs exhibit robust tolerance to exposure to vitrification solutions in relevant conditions
- …