176 research outputs found
Top-down modulation of shape and roughness discrimination in active touch by covert attention
Due to limitations in perceptual processing, information relevant to momentary task goals is selected from the vast amount of available sensory information by top-down mechanisms (e.g. attention) that can increase perceptual performance. We investigated how covert attention affects perception of 3D objects in active touch. In our experiment, participants simultaneously explored the shape and roughness of two objects in sequence, and were told afterwards to compare the two objects with regard to one of the two features. To direct the focus of covert attention to the different features we manipulated the expectation of a shape or roughness judgment by varying the frequency of trials for each task (20%, 50%, 80%), then we measured discrimination thresholds. We found higher discrimination thresholds for both shape and roughness perception when the task was unexpected, compared to the conditions in which the task was expected (or both tasks were expected equally). Our results suggest that active touch perception is modulated by expectations about the task. This implies that despite fundamental differences, active and passive touch are affected by feature selective covert attention in a similar way
The Socio-cultural Value of Upland Regions in the Vicinity of Cities in Comparison With Urban Green Spaces
Mountain and upland regions provide a wide range of ecosystem services to residents and visitors. While ecosystem research in mountain regions is on the rise, the linkages between sociocultural benefits and ecological systems remain little explored. Mountainous regions close to urban areas provide numerous benefits to a large number of individuals, suggesting a high social value, particularly for cultural ecosystem services. We explored and compared visitors' valuation of ecosystem services in the Pentland Hills, an upland range close to the city of Edinburgh, Scotland, and urban green spaces within Edinburgh. Based on 715 responses to user surveys in both study areas, we identified intense use and high social value for both areas. Several ecosystem services were perceived as equally important in both areas, including many cultural ecosystem services. Significant differences were revealed in the value of physically using nature, which Pentland Hills users rated more highly than those in the urban green spaces, and of mitigation of pollutants and carbon sequestration, for which the urban green spaces were valued more highly. Major differences were further identified for preferences in future land management, with nature-oriented management preferred by about 57% of the interviewees in the Pentland Hills, compared to 31% in the urban parks. The study highlights the substantial value of upland areas in close vicinity to a city for physically using and experiencing nature, with a strong acceptance of nature conservation
Antisense-mediated exon skipping: a therapeutic strategy for titin-based dilated cardiomyopathy
Frameshift mutations in the TTN gene encoding titin are a major cause for inherited forms of dilated cardiomyopathy (DCM), a heart disease characterized by ventricular dilatation, systolic dysfunction, and progressive heart failure. To date, there are no specific treatment options for DCM patients but heart transplantation. Here, we show the beneficial potential of reframing titin transcripts by antisense oligonucleotide (AON)-mediated exon skipping in human and murine models of DCM carrying a previously identified autosomal-dominant frameshift mutation in titin exon 326. Correction of TTN reading frame in patient-specific cardiomyocytes derived from induced pluripotent stem cells rescued defective myofibril assembly and stability and normalized the sarcomeric protein expression. AON treatment in Ttn knock-in mice improved sarcomere formation and contractile performance in homozygous embryos and prevented the development of the DCM phenotype in heterozygous animals. These results demonstrate that disruption of the titin reading frame due to a truncating DCM mutation canbe restored by exon skipping in both patient cardiomyocytes invitro and mouse heart invivo, indicating RNA-based strategies as a potential treatment option for DCM
<i>DELAY OF GERMINATION 1</i> mediates a conserved coat-dormancy mechanism for the temperature- and gibberellin-dependent control of seed germination
Seed germination is an important life-cycle transition because it determines subsequent plant survival and reproductive success. To detect optimal spatiotemporal conditions for germination, seeds act as sophisticated environmental sensors integrating information such as ambient temperature. Here we show that the DELAY OF GERMINATION 1 (DOG1) gene, known for providing dormancy adaptation to distinct environments, determines the optimal temperature for seed germination. By reciprocal gene-swapping experiments between Brassicaceae species we show that the DOG1-mediated dormancy mechanism is conserved. Biomechanical analyses showthat thismechanism regulates the material properties of the endosperm, a seed tissue layer acting as germination barrier to control coat dormancy. We found that DOG1 inhibits the expression of gibberellin (GA)-regulated genes encoding cell-wall remodeling proteins in a temperature-dependent manner. Furthermore we demonstrate that DOG1 causes temperature-dependent alterations in the seed GA metabolism. These alterations in hormone metabolism are brought about by the temperature-dependent differential expression of genes encoding key enzymes of the GA biosynthetic pathway. These effects of DOG1 lead to a temperature-dependent control of endosperm weakening and determine the optimal temperature for germination. The conserved DOG1-mediated coat-dormancymechanismprovides a highly adaptable temperature-sensing mechanism to control the timing of germination.</p
Towards long-term standardised carbon and greenhouse gas observations for monitoring Europe's terrestrial ecosystems : a review
Research infrastructures play a key role in launching a new generation of integrated long-term, geographically distributed observation programmes designed to monitor climate change, better understand its impacts on global ecosystems, and evaluate possible mitigation and adaptation strategies. The pan-European Integrated Carbon Observation System combines carbon and greenhouse gas (GHG; CO2, CH4, N2O, H2O) observations within the atmosphere, terrestrial ecosystems and oceans. High-precision measurements are obtained using standardised methodologies, are centrally processed and openly available in a traceable and verifiable fashion in combination with detailed metadata. The Integrated Carbon Observation System ecosystem station network aims to sample climate and land-cover variability across Europe. In addition to GHG flux measurements, a large set of complementary data (including management practices, vegetation and soil characteristics) is collected to support the interpretation, spatial upscaling and modelling of observed ecosystem carbon and GHG dynamics. The applied sampling design was developed and formulated in protocols by the scientific community, representing a trade-off between an ideal dataset and practical feasibility. The use of open-access, high-quality and multi-level data products by different user communities is crucial for the Integrated Carbon Observation System in order to achieve its scientific potential and societal value.Peer reviewe
urbisphere-Berlin campaign: Investigating multi-scale urban impacts on the atmospheric boundary layer
For next-generation weather and climate numerical models to resolve cities, both higher spatial resolution and sub-grid parameterizations of urban canopy-atmosphere processes are required. Key is to better understand intra-urban variability and urban-rural differences in atmospheric boundary layer (ABL) dynamics. This includes upwind-downwind effects due to cities’ influences on the atmosphere beyond their boundaries. To address these aspects a network of >25 ground-based remote-sensing sites was designed for the Berlin region (Germany), considering city form, function, and typical weather conditions. This allows investigation of how different urban densities and human activities impact ABL dynamics. As part of the interdisciplinary European Research Council Grant urbisphere, the network was operated from Autumn 2021 to Autumn 2022. Here we provide an overview of the scientific aims, campaign setup, and results from two days, highlighting multi-scale urban impacts on the atmosphere in combination with high-resolution numerical modeling at 100 m grid-spacing. During a spring day, the analyzes show systematic upwind-city-downwind effects in ABL heights, largely driven by urban-rural differences in surface heat fluxes. During a heatwave day, ABL height is remarkably deep, yet spatial differences in ABL heights are less pronounced due to overall dry soil conditions, resulting in similar observed surface heat fluxes. Our modeling results provide further insights into ABL characteristics not resolved by the observation network, highlighting synergies between both approaches. Our data and findings will support modeling to help deliver services to a wider community from citizens to those managing health, energy, transport, land-use and other city infrastructure and operations
- …