4 research outputs found

    SNPs in human miRNA genes affect biogenesis and function

    No full text
    MicroRNAs (miRNAs) are 21–25-nucleotide-long, noncoding RNAs that are involved in translational regulation. Most miRNAs derive from a two-step sequential processing: the generation of pre-miRNA from pri-miRNA by the Drosha/DGCR8 complex in the nucleus, and the generation of mature miRNAs from pre-miRNAs by the Dicer/TRBP complex in the cytoplasm. Sequence variation around the processing sites, and sequence variations in the mature miRNA, especially the seed sequence, may have profound affects on miRNA biogenesis and function. In the context of analyzing the roles of miRNAs in Schizophrenia and Autism, we defined at least 24 human X-linked miRNA variants. Functional assays were developed and performed on these variants. In this study we investigate the affects of single nucleotide polymorphisms (SNPs) on the generation of mature miRNAs and their function, and report that naturally occurring SNPs can impair or enhance miRNA processing as well as alter the sites of processing. Since miRNAs are small functional units, single base changes in both the precursor elements as well as the mature miRNA sequence may drive the evolution of new microRNAs by altering their biological function. Finally, the miRNAs examined in this study are X-linked, suggesting that the mutant alleles could be determinants in the etiology of diseases

    Evidence for X-chromosomal schizophrenia associated with microRNA alterations.

    Get PDF
    Schizophrenia is a severe disabling brain disease affecting about 1% of the population. Individual microRNAs (miRNAs) affect moderate downregulation of gene expression. In addition, components required for miRNA processing and/or function have also been implicated in X-linked mental retardation, neurological and neoplastic diseases, pointing to the wide ranging involvement of miRNAs in disease.To explore the role of miRNAs in schizophrenia, 59 microRNA genes on the X-chromosome were amplified and sequenced in males with (193) and without (191) schizophrenia spectrum disorders to test the hypothesis that ultra-rare mutations in microRNA collectively contribute to the risk of schizophrenia. Here we provide the first association of microRNA gene dysfunction with schizophrenia. Eight ultra-rare variants in the precursor or mature miRNA were identified in eight distinct miRNA genes in 4% of analyzed males with schizophrenia. One ultra-rare variant was identified in a control sample (with a history of depression) (8/193 versus 1/191, p = 0.02 by one-sided Fisher's exact test, odds ratio = 8.2). These variants were not found in an additional 7,197 control X-chromosomes.Functional analyses of ectopically expressed copies of the variant miRNA precursors demonstrate loss of function, gain of function or altered expression levels. While confirmation is required, this study suggests that microRNA mutations can contribute to schizophrenia

    Identification of high risk DISC1 protein structural variants in patients with bipolar spectrum disorder

    No full text
    In a large Scottish pedigree, a balanced translocation t (1;11)(q42.1;q14.3) disrupting the DISC1 and DISC2 genes segregates with major mental illness, including schizophrenia and depression. A frame-shift carboxyl-terminal deletion was reported in DISC1 in an American family with schizophrenia, but subsequently found in two controls. Herein, we test one hypothesis utilizing a large scale case-control mutation analysis: uncommon DISC1 variants are associated with high risk for bipolar spectrum disorder. We have analyzed the regions of likely functional significance in the DISC1 gene in 504 patients with bipolar spectrum disorder and 576 ethnically similar controls. Five patients were heterozygous for ultra-rare protein structural variants not found in the 576 controls (p=0.02, one-sided Fisher's exact test) and shown to be ultra-rare by their absence in a pool of 10,000 control alleles. In our sample, ultra-rare (private) protein structural variants in DISC1 are associated with an estimated attributable risk of about 0.5% in bipolar spectrum disorder. These data are consistent with: (i) the high frequency of depression in the large Scottish family with a translocation disrupting DISC1; (ii) linkage disequilibrium analysis demonstrating haplotypes associated with relatively small increases in risk for bipolar disorder (<3-fold odds ratio). The data illustrate how low/moderate risk haplotypes that might be found by the HapMap project can be followed up by resequencing to identify protein structural variants with high risk, low frequency and of potential clinical utility
    corecore