2 research outputs found
Recommended from our members
ITC data for CDC37-BRAF interactions for paper: Recognition of BRAF by CDC37 and Re-evaluation of the Activation mechanism for the Class 2 BRAF-L597R Mutant
Data for paper published in Biomolecules June 2022Â
Isothermal Titration Calorimetry results for CDC37-BRAF interactions. dil in the filename donates the heat of dilution. Heats of dilution are in to buffer. Pairs with the same date donate a set of experiments. After the date the interacting partner proteins or small molecule is shown. Use Origin program to access the data files.
Abstract:
The kinome specific co-chaperone, CDC37, is responsible for delivering BRAF to the Hsp90 complex, where it is then translocated to the RAS complex at the plasma membrane for RAS mediated dimerization and subsequent activation. We identify a bipartite interaction between CDC37 and BRAF and delimitate the essential structural elements of CDC37 involved in BRAF recognition. We find an extended and conserved CDC37 motif, 20HPNID---SL--W31, responsible for recognising the C-lobe of BRAF kinase domain, while the C-terminal domain of CDC37 is responsible for the second of the bipartite interaction with BRAF.  We show that dimerization of BRAF, independent of nucleotide binding, can act as a potent signal that prevents CDC37 recognition and discuss the implications of mutations in BRAF and the consequences on signalling in a clinical setting, particularly for class 2 BRAF mutations. </p
Recommended from our members
Thermal Shift Assay for BRAF mutants for paper: Recognition of BRAF by CDC37 and Re-evaluation of the Activation mechanism for the Class 2 BRAF-L597R Mutant
Data for paper published in Biomolecules June 2022Â
Raw data for Thermal shift asay of BRAF mutants. Use the LightCycler 480 SW 1.5 software or similar to access the data files.
Abstract:
The kinome specific co-chaperone, CDC37, is responsible for delivering BRAF to the Hsp90 complex, where it is then translocated to the RAS complex at the plasma membrane for RAS mediated dimerization and subsequent activation. We identify a bipartite interaction between CDC37 and BRAF and delimitate the essential structural elements of CDC37 involved in BRAF recognition. We find an extended and conserved CDC37 motif, 20HPNID---SL--W31, responsible for recognising the C-lobe of BRAF kinase domain, while the C-terminal domain of CDC37 is responsible for the second of the bipartite interaction with BRAF.  We show that dimerization of BRAF, independent of nucleotide binding, can act as a potent signal that prevents CDC37 recognition and discuss the implications of mutations in BRAF and the consequences on signalling in a clinical setting, particularly for class 2 BRAF mutations. </p