57 research outputs found
A little bit is better than nothing: the incomplete parthenogenesis of salamanders, frogs and fish
A re-examination of the mitochondrial genomes of unisexual salamander lineages, published in BMC Evolutionary Biology, shows them to be the oldest unisexual vertebrates known, having been around for 5 million years. This presents a challenge to the prediction that lack of genetic recombination is a fast track to extinction
Linking local movement and molecular analysis to explore philopatry and population connectivity of the southern stingray Hypanus americanus
Peer reviewedPublisher PD
Automictic Reproduction in Interspecific Hybrids of Poeciliid Fish
SummaryAutomixis, the process whereby the fusion of meiotic products restores the diploid state of the egg, is a common mode of reproduction in plants but has also been described in invertebrate animals [1, 2]. In vertebrates, however, automixis has so far only been discussed as one of several explanations for isolated cases of facultative parthenogenesis [3, 4]. Analyzing oocyte formation in F1 hybrids derived from Poecilia mexicana limantouri and P. latipinna crosses (the cross that led to the formation of the gynogenetic Poecilia formosa[5, 6]), we found molecular evidence for automictic oocyte production [7]. The mechanism involves the random fusion of meiotic products after the second meiotic division. The fertilization of diploid oocytes gives rise to fully viable triploid offspring. Although the automictic production of diploid oocytes as seen in these F1 hybrids clearly represents a preadaptation to parthenogenetic reproduction [8], it is also a powerful intrinsic postzygotic isolation mechanism because the resulting next generation triploids were always sterile. The mechanism described here can explain facultative parthenogenesis [9], as well as varying ploidy levels reported in different animal groups [10]. Most importantly, at least some of the reported cases of triploidy in humans [11] can now be traced back to automixis
Analysis of a possible independent origin of triploid P. formosa outside of the RĂo PurificaciĂłn river system
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens
Population divergence in East African coelacanths
The coelacanth, Latimeria chalumnae, occurs at the Eastern coast of Africa from South Africa up to Kenya. It is often referred to as a living fossil mainly because of its nearly unchanged morphology since the Middle Devonian. As it is a close relative to the last common ancestor of fish and tetrapods, molecular studies mostly focussed on their phylogenetic relationships. We now present a population genetic study based on 71 adults from the whole known range of the species. Despite an overall low genetic diversity, there is evidence for divergence of local populations. We assume that originally the coelacanths at the East African Coast derived from the Comoros population, but have since then diversified into additional independent populations: one in South Africa and another in Tanzania. Unexpectedly, we find a split of the Comoran coelacanths into two sympatric subpopulations. Despite its undeniably slow evolutionary rate, the coelacanth still diversifies and is therefore able to adapt to new environmental conditions
Alternative Lebenslauf-Strategien beim westafrikanischen Kreideriedfrosch Hyperolius nitidulus
Distinct juvenile behaviour differences, changes in adult sizes and reproductive capacity and a long reproductive period triggered the working hypothesis of two alternative life-cycle strategies favouring aestivation or immediate reproduction. The hypothesis for the life-cycles of Hyperolius nitidulus that differed from the commonly assumed reproductive strategy for this species was confirmed by the results of this study. Aestivated juveniles start to mature at the beginning of the rainy season and reproduce subsequently. Their tadpoles grow until metamorphosis and either reproduce in this same season, in which case their offspring aestivates (one year - two generations), or they delay reproduction to the following year and aestivate themselves (one year - one generation). Juveniles trying to reproduce as fast as possible will invest in growth and differentiation and show no costly adaptations to aestivation, while juveniles delaying reproduction to the following rainy season will be well adapted to dry season conditions. Indirect evidence for the existence of a second generation was found in all three investigation years: adult size decreased abruptly towards the end of the rainy season, mainly due to the arrival of very small individuals, and clutch size decreased abruptly. Also at the end of the rainy season juveniles had two behavioural types: one hiding on the ground and clearly avoiding direct sunlight and another sitting freely above ground showing higher tolerance towards dry season conditions (high air temperatures and low humidity). Skin morphology differed between the types showing many more purine crystals in a higher order in the dry-season adapted juveniles. The final proof for the existence of a second generation came with the recapture of individuals marked as juveniles when they left the pond. The 45 recaptured frogs definitely came back to the pond to reproduce during the same season in 1999. Second generation frogs (males and females) were significantly smaller than the rest of all adults and egg diameter was reduced. Clutch size did not differ significantly. It was found that females did not discriminate against second generation males when coming to the ponds to reproduce. Second generation males had a similar chance to be found in amplexus as first generation males. Indirect and direct evidence for a second generation matched very well. The sudden size decrease in adults occurred just at the time when the first marked frogs returned. The observation that freshly metamorphosed froglets were able to sit in the sun directly after leaving the water led to the assumption that the decision whether to aestivate or to reproduce already happens during the frogs' larval period. Water chemistry and the influence of light was investigated to look for the factors triggering the decision, but only contaminated water increased the number of juveniles ready for aestivation. Whether the life history polymorphism observed in Hyperolius nitidulus is due to phenotypic plasticity or genetic polymorphism is still not known. Despite this uncertainty, there is no doubt that the optimal combination of different life histories is profitable and may be a reason for the wide range and high local abundance of Hyperolius nitidulus.Deutliche Verhaltensunterschiede bei Juvenilen, VerĂ€nderungen in der GröĂe von Adultfröschen, reduzierte GelegegröĂen und eine lange Reproduktionsphase fĂŒhrten zu der Arbeitshypothese von möglicherweise zwei verschiedenen life-history Strategien fĂŒr Hyperolius nitidulus: Ăstivation oder unmittelbare Reproduktion. Die Hypothese der alternativen life-cycles wich vom allgemein angenommenen Lebensverlauf der Frösche ab, wurde aber in dieser Arbeit bestĂ€tigt. Ăstivierte Jungfrösche entwickeln sich zu Beginn der Regenzeit zu Adulten und reproduzieren sich dann (= erste Generation). Ihre Kaulquappen wachsen entweder bis zur Metamorphose und reproduzieren sich dann in dieser Saison (Sommergeneration), in welchem Fall erst ihre Nachkommen wieder Ă€stivieren (ein Jahr - zwei Generationen) oder sie verschieben ihre Reproduktion auf das nĂ€chste Jahr und Ă€stivieren selbst (ein Jahr - eine Generation). Jungfrösche, die sofort versuchen, sich zu reproduzieren, sollten in schnelles Wachstum und Differenzierung investieren und keine teuren Anpassungen an die Ăstivation aufweisen, wĂ€hrend Jungtiere, die die Reproduktion auf das nĂ€chste Jahr verschieben, gut an Trockenzeitbedingungen angepasst sein sollten. Indirekte Hinweise auf eine kurzlebige Sommergeneration (= zweite Generation) gab es in allen Untersuchungsjahren: Die mittlere AdultgröĂe nahm gegen Ende der Regenzeit abrupt ab, hauptsĂ€chlich aufgrund der Ankunft extrem kleiner Tiere, und auch die GelegegröĂe ging rapide zurĂŒck. Gegen Ende der Regenzeit gab es bei den Jungfröschen auĂerdem zwei verschiedene Verhaltenstypen: einen, der sich am Boden versteckte und deutlich direkte Sonnenbestrahlung mied und ein anderer, der frei an Grashalmen ĂŒber dem Boden saĂ und höhere Toleranz gegenĂŒber Trockenzeitbedingungen (hohe Temperaturen und niedrige Luftfeuchtigkeit) aufwies. Die Hautmorphologie dieser Verhaltenstypen war ebenfalls unterschiedlich. Die trockenadaptierten Tiere hatten mehr Purinkristalle, die auĂerdem stĂ€rker geordnet waren. Der Wiederfang von Tieren, die sich in derselben Regenzeit in der sie als Jungfrösche markiert worden waren, fortpflanzten, war der direkte Beweis fĂŒr die Existenz Sommergeneration. 45 Frösche kamen 1999 in derselben Saison zurĂŒck, um sich zu reproduzieren. Frösche aus der Sommergeneration (=Fortpflanzung in der selben Saison) waren signifikant kleiner als der Rest der Frösche am TĂŒmpel, und der Eidurchmesser von Gelegen von Zweitgenerationsweibchen war reduziert. GelegegröĂen zwischen erster und zweiter Generation waren nicht unterschiedlich. Reproduktionsbereite Weibchen unterschieden nicht zwischen MĂ€nnchen der ersten und zweiten Generation. MĂ€nnchen der zweiten Generation hatten daher dieselben Amplexuschancen. Direkte und indirekte Hinweise auf eine zweite Generation passten zeitlich sehr gut zusammen. Die plötzliche GröĂenreduktion in den Adulten trat genau zu dem Zeitpunkt auf, zu dem die ersten markierten Frösche zurĂŒckkamen, um sich zu reproduzieren. Die Beobachtung, dass frischmetamorphosierte Jungtiere in der Lage waren, direkt nach dem Verlassen des Wassers in der Sonne zu sitzen, fĂŒhrten zu der Annahme, dass die Entscheidung fĂŒr Reproduktion oder Ăstivation bereits wĂ€hrend der larvalen Phase gefĂ€llt werden muss. Wasserchemie und der Einfluss von Licht wurden untersucht, allerdings erhöhte nur stark verschmutztes Wasser die Anzahl Ă€stivationsbereiter Juveniler. Ob der in Hyperolius nitidulus gefundenen life-history Polymorphismus genetisch ist, oder ob es sich um phĂ€notypische PlastizitĂ€t handelt, ist noch nicht bekannt. Trotz dieser Unsicherheit gibt es keinen Zweifel, dass die optimale Kombination von verschiedenen life-history Strategien vorteilhaft ist und ein Grund fĂŒr die weite Verbreitung und hohe lokale Abundanz von Hyperolius nitidulus sein könnte
- âŠ