378 research outputs found

    Spoken content retrieval: A survey of techniques and technologies

    Get PDF
    Speech media, that is, digital audio and video containing spoken content, has blossomed in recent years. Large collections are accruing on the Internet as well as in private and enterprise settings. This growth has motivated extensive research on techniques and technologies that facilitate reliable indexing and retrieval. Spoken content retrieval (SCR) requires the combination of audio and speech processing technologies with methods from information retrieval (IR). SCR research initially investigated planned speech structured in document-like units, but has subsequently shifted focus to more informal spoken content produced spontaneously, outside of the studio and in conversational settings. This survey provides an overview of the field of SCR encompassing component technologies, the relationship of SCR to text IR and automatic speech recognition and user interaction issues. It is aimed at researchers with backgrounds in speech technology or IR who are seeking deeper insight on how these fields are integrated to support research and development, thus addressing the core challenges of SCR

    Building a Generation Knowledge Source using Internet-Accessible Newswire

    Full text link
    In this paper, we describe a method for automatic creation of a knowledge source for text generation using information extraction over the Internet. We present a prototype system called PROFILE which uses a client-server architecture to extract noun-phrase descriptions of entities such as people, places, and organizations. The system serves two purposes: as an information extraction tool, it allows users to search for textual descriptions of entities; as a utility to generate functional descriptions (FD), it is used in a functional-unification based generation system. We present an evaluation of the approach and its applications to natural language generation and summarization.Comment: 8 pages, uses eps

    Gathering Statistics to Aspectually Classify Sentences with a Genetic Algorithm

    Full text link
    This paper presents a method for large corpus analysis to semantically classify an entire clause. In particular, we use cooccurrence statistics among similar clauses to determine the aspectual class of an input clause. The process examines linguistic features of clauses that are relevant to aspectual classification. A genetic algorithm determines what combinations of linguistic features to use for this task.Comment: postscript, 9 pages, Proceedings of the Second International Conference on New Methods in Language Processing, Oflazer and Somers ed
    corecore