35 research outputs found

    Inhibition of Calpains by Calpastatin: Implications for Cellular and Functional Damage Following Traumatic Brain Injury

    Get PDF
    Traumatic brain injury (TBI) is a devastating health problem based on its high incidence, economic burden, and lack of effective pharmacological treatment. Individuals who suffer an injury often experience lifelong disability. TBI results in abrupt, initial cell damage leading to delayed neuronal death. The calcium-activated proteases, calpains, are known to contribute to this secondary neurodegenerative cascade. Prolonged activation of calpains results in proteolysis of numerous cellular substrates including cytoskeletal components, membrane receptors, and cytosolic proteins, contributing to cell demise despite coincident expression of calpastatin, the specific inhibitor of calpains. A comprehensive analysis using two separate calpastatin transgenic mouse lines was performed to test the hypothesis that calpastatin overexpression will reduce posttraumatic calpain activity affording neuroprotection and behavioral efficacy. Increased calpastatin expression was achieved using transgenic mice that overexpress the human calpastatin (hCAST) construct under control of a neuron-specific calcium-calmodulin dependent kinase II alpha or a ubiquitous prion protein promoter. Both transgenic lines exhibited enhanced calpastatin expression within the brain, extending into peripheral tissues under the prion protein promoter. hCAST overexpression significantly reduced protease activity confirmed by reductions in acute calpain-mediated substrate proteolysis in the cortex and hippocampus following controlled cortical impact brain injury. Aspects of posttraumatic motor and cognitive behavioral deficits were also lessened in hCAST transgenic mice compared to their wildtype littermates. However, volumetric analyses of neocortical contusion revealed no histological neuroprotection at either acute or long-term time points in either transgenic line. Partial hippocampal neuroprotection observed at a moderate injury severity in neuron-specific calpastatin overexpressing transgenic mice was lost after severe TBI. Greater levels of calpastatin under the prion protein promoter line failed to protect against hippocampal cell loss after severe brain injury. This study underscores the effectiveness of calpastatin overexpression in reducing calpain-mediated proteolysis and behavioral impairment after TBI, supporting the therapeutic potential for calpain inhibition. However, the reduction in proteolysis without accompanied neocortical neuroprotection suggests the involvement of other factors that are critical for neuronal survival after contusion brain injury. Augmenting calpastatin levels may be an effective method for calpain inhibition and may have efficacy in reducing behavioral morbidity after TBI and neurodegenerative disorders

    Evaluating the efficacy of purchased antisense oligonucleotides to reduce mouse and human tau in vivo

    Get PDF
    Many preclinical and clinical studies support the use of antisense oligonucleotides (ASOs) as effective therapeutic strategies. However, acquiring ASOs for research purposes may be limited by partnerships with the pharmaceutical companies. Our lab previously developed an effective ASO strategy to lower human tau and reverse pathology in aged tauopathy model mice. Testing the efficacy of purchased tau lowering ASOs would provide support for these reagents as broad research tools. Purchased mouse and human tau lowering ASOs were infused or injected intracerebroventricularly into wildtype and tau transgenic mice. Following treatment, brain tissue evaluated for ASO distribution and levels of tau mRNA, protein, and phosphorylated tau. We show that purchased ASOs enter cell types of the brain and effectively decrease mouse or human tau mRNA and protein levels. Human tau lowering ASO treatment in PS19 mice decreased phosphorylated tau and gliosis relative to saline-treated PS19 mice, consistent with our previous study using a non-commercial tau lowering ASO. The results of this study demonstrate the efficacy of purchased tau targeting ASOs in vivo to support their broad use by researchers

    Targeted ASO-mediated Atp1a2 knockdown in astrocytes reduces SOD1 aggregation and accelerates disease onset in mutant SOD1 mice

    Get PDF
    Astrocyte-specific ion pump α2-Na+/K+-ATPase plays a critical role in the pathogenesis of amyotrophic lateral sclerosis (ALS). Here, we test the effect of Atp1a2 mRNA-specific antisense oligonucleotides (ASOs) to induce α2-Na+/K+-ATPase knockdown in the widely used ALS animal model, SOD1*G93A mice. Two ASOs led to efficient Atp1a2 knockdown and significantly reduced SOD1 aggregation in vivo. Although Atp1a2 ASO-treated mice displayed no off-target or systemic toxicity, the ASO-treated mice exhibited an accelerated disease onset and shorter lifespan than control mice. Transcriptomics studies reveal downregulation of genes involved in oxidative response, metabolic pathways, trans-synaptic signaling, and upregulation of genes involved in glutamate receptor signaling and complement activation, suggesting a potential role for these molecular pathways in de-coupling SOD1 aggregation from survival in Atp1a2 ASO-treated mice. Together, these results reveal a role for α2-Na+/K+-ATPase in SOD1 aggregation and highlight the critical effect of temporal modulation of genetically validated therapeutic targets in neurodegenerative diseases

    Astrocytic 4R tau expression drives astrocyte reactivity and dysfunction

    Get PDF
    The protein tau and its isoforms are associated with several neurodegenerative diseases, many of which are characterized by greater deposition of the 4-repeat (4R) tau isoform; however, the role of 4R tau in disease pathogenesis remains unclear. We created antisense oligonucleotides (ASOs) that alter the ratio of 3R to 4R tau to investigate the role of specific tau isoforms in disease. Preferential expression of 4R tau in human tau-expressing (hTau-expressing) mice was previously shown to increase seizure severity and phosphorylated tau deposition without neuronal or synaptic loss. In this study, we observed strong colocalization of 4R tau within reactive astrocytes and increased expression of pan-reactive and neurotoxic genes following 3R to 4R tau splicing ASO treatment in hTau mice. Increasing 4R tau levels in primary astrocytes provoked a similar response, including a neurotoxic genetic profile and diminished homeostatic function, which was replicated in human induced pluripotent stem cell-derived (iPSC-derived) astrocytes harboring a mutation that exhibits greater 4R tau. Healthy neurons cultured with 4R tau-expressing human iPSC-derived astrocytes exhibited a higher firing frequency and hypersynchrony, which could be prevented by lowering tau expression. These findings support a potentially novel pathway by which astrocytic 4R tau mediates reactivity and dysfunction and suggest that astrocyte-targeted therapeutics against 4R tau may mitigate neurodegenerative disease progression

    MicroRNA profiling reveals marker of motor neuron disease in ALS models

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder marked by the loss of motor neurons (MNs) in the brain and spinal cord, leading to fatally debilitating weakness. Because this disease predominantly affects MNs, we aimed to characterize the distinct expression profile of that cell type to elucidate underlying disease mechanisms and to identify novel targets that inform on MN health during ALS disease time course. microRNAs (miRNAs) are short, noncoding RNAs that can shape the expression profile of a cell and thus often exhibit cell-type-enriched expression. To determine MN-enriched miRNA expression, we used Cre recombinase-dependent miRNA tagging and affinity purification in mice. By defining thein vivomiRNA expression of MNs, all neurons, astrocytes, and microglia, we then focused on MN-enriched miRNAs via a comparative analysis and found that they may functionally distinguish MNs postnatally from other spinal neurons. Characterizing the levels of the MN-enriched miRNAs in CSF harvested from ALS models of MN disease demonstrated that one miRNA (miR-218) tracked with MN loss and was responsive to an ALS therapy in rodent models. Therefore, we have used cellular expression profiling tools to define the distinct miRNA expression of MNs, which is likely to enrich future studies of MN disease. This approach enabled the development of a novel, drug-responsive marker of MN disease in ALS rodents.SIGNIFICANCE STATEMENTAmyotrophic lateral sclerosis (ALS) is a neurodegenerative disease in which motor neurons (MNs) in the brain and spinal cord are selectively lost. To develop tools to aid in our understanding of the distinct expression profiles of MNs and, ultimately, to monitor MN disease progression, we identified small regulatory microRNAs (miRNAs) that were highly enriched or exclusive in MNs. The signal for one of these MN-enriched miRNAs is detectable in spinal tap biofluid from an ALS rat model, where its levels change as disease progresses, suggesting that it may be a clinically useful marker of disease status. Furthermore, rats treated with ALS therapy have restored expression of this MN RNA marker, making it an MN-specific and drug-responsive marker for ALS rodents.</jats:p

    TREM2 inhibition triggers antitumor cell activity of myeloid cells in glioblastoma

    Get PDF
    Triggering receptor expressed on myeloid cells 2 (TREM2) plays important roles in brain microglial function in neurodegenerative diseases, but the role of TREM2 in the GBM TME has not been examined. Here, we found that TREM2 is highly expressed in myeloid subsets, including macrophages and microglia in human and mouse GBM tumors and that high TREM2 expression correlates with poor prognosis in patients with GBM. TREM2 loss of function in human macrophages and mouse myeloid cells increased interferon-γ-induced immunoactivation, proinflammatory polarization, and tumoricidal capacity. In orthotopic mouse GBM models, mice with chronic and acute Trem2 loss of function exhibited decreased tumor growth and increased survival. Trem2 inhibition reprogrammed myeloid phenotypes and increased programmed cell death protein 1 (PD-1

    Protective Effects of Lovastatin in a Population-Based ALS Study and Mouse Model.

    No full text
    OBJECTIVE: The objective of this study was to use a novel combined pharmacoepidemiologic and amyotrophic lateral sclerosis (ALS) mouse model approach to identify potential motor neuron protective medications. METHODS: We constructed a large, population-based case-control study to investigate motor neuron disease (MND) among US Medicare beneficiaries aged 66 to 90 in 2009. We included 1,128 incident MND cases and 56,400 age, sex, race, and ethnicity matched controls. We calculated MND relative risk for \u3e1,000 active ingredients represented in Part D (pharmacy) claims in 2006 to 2007 (\u3e1 year before diagnosis/reference). We then applied a comprehensive screening approach to select medications for testing in SOD1 RESULTS: We observed previously established medical associations for MND and an inverse dose-response association between lovastatin and MND, with 28% reduced risk at 40 mg/day. In SOD1 INTERPRETATION: Lovastatin reduced the risk of ALS in humans, which was confirmed in an ALS mouse model by delayed symptom onset, prolonged survival, and preservation of motor neurons. Although further studies to understand the mechanism are required, lovastatin may represent a potential neuroprotective therapy for patients with ALS. These data demonstrate the utility of a combined pharmacoepidemiologic and mouse model approach. ANN NEUROL 2023
    corecore