4 research outputs found

    Lifestyle Factors, Mitochondrial Dynamics, and Neuroprotection

    Get PDF
    The brain requires vast amounts of energy to carry out neurotransmission; indeed, it is responsible for approximately one-fifth of the body’s energy consumption. Therefore, in order to understand functions of brain cells under both normal and pathological conditions, it is critical to elucidate dynamics of intracellular energy. The mitochondrion is the key intercellular organelle that controls neuronal energy and survival. Numerous studies have reported a correlation between altered mitochondrial function and brain-associated diseases; thus mitochondria may serve as a promising target for treating these conditions. In this chapter, we will discuss the mechanisms of mitochondrial production, movement, and degradation in order to understand accessibility of energy during physiological and pathological conditions of the brain. While research targeting molecular dynamics is promising, translation into clinical relevance based on bench research is challenging. For these reasons, we will also summarize lifestyle factors, including interventions and chronic comorbidities that disrupt mitochondrial dynamics. By determining lifestyle factors that are readily accessible, we can propose a new viewpoint for a synergistic and translational approach for neuroprotection

    Nutritional Regulators of Bcl-xL in the Brain

    No full text
    B-cell lymphoma-extra large (Bcl-xL) is an anti-apoptotic Bcl-2 protein found in the mitochondrial membrane. Bcl-xL is reported to support normal brain development and protects neurons against toxic stimulation during pathological process via its roles in regulation of mitochondrial functions. Despite promising evidence showing neuroprotective properties of Bcl-xL, commonly applied molecular approaches such as genetic manipulation may not be readily applicable for human subjects. Therefore, findings at the bench may be slow to be translated into treatments for disease. Currently, there is no FDA approved application that specifically targets Bcl-xL and treats brain-associated pathology in humans. In this review, we will discuss naturally occurring nutrients that may exhibit regulatory effects on Bcl-xL expression or activity, thus potentially providing affordable, readily-applicable, easy, and safe strategies to protect the brain
    corecore