3 research outputs found
Gross anatomy, histology and blood vessel topography of the alimentary canal of the Inland Bearded Dragon (Pogona vitticeps).
Imaging techniques have proved to be crucial for diagnosis in reptile species. The topography of the internal organs of bearded dragons has been described in recent studies as meeting the small animal practitioners´ demand for knowledge concerning their anatomy. However, the nomenclature in the respective literature is not uniform, which could lead to misunderstandings concerning the respective and/or affected parts of the alimentary canal. Therefore, the aim of this study was to provide clear information on anatomy and histology of the alimentary canal of bearded dragons including supplying blood vessels. For the dissection of the alimentary canal, 11 Inland Bearded Dragons (Pogona vitticeps) were used (five males, six females), which had been euthanised for clinical reasons other than those concerning the digestive tract or had died spontaneously. The supplying arteries were demonstrated by injecting red latex into the aorta, while the intestinal veins were filled with blue latex via the portal vein. Microscopic examination was carried out on specimens of seven additional bearded dragons using routine histologic procedures. Macroscopically, the sections of the alimentary canal from oral to aboral were distinguished into oesophagus, stomach, small intestine, colic ampulla, colic isthmus, rectum and cloaca. Differentiation of the duodenum, jejunum and ileum was only possible when considering the bile duct, the vasculature and the histology of the organ wall. Arteries supplying the oesophagus and the final straight part of the large intestine originated from the aorta in a segmental manner. Between these, three unpaired arteries arose from the aorta. Their branches supplied stomach and intestine excluding its last part. Based on the findings of the present study, a nomenclature for the different parts of the alimentary canal and the supplying blood vessels of bearded dragons is suggested which is well understandable for veterinary practitioners and is based on zoological knowledge of reptiles
Specific anatomy and radiographic illustration of the digestive tract and transit time of two orally administered contrast media in Inland bearded dragons (Pogona vitticeps).
The aim of this study was to describe the specific gross and radiographic anatomy of the digestive tract of inland bearded dragons (Pogona vitticeps). Eleven bearded dragon cadavers of both sexes (6 females, 5 males) were dissected to examine, measure, and document the specific gross anatomy of the alimentary canal. Measurements collected from the cadavers included snout-vent length, total length of the alimentary canal, and the lengths of the individual sections of the gastrointestinal tract, including the esophagus, stomach, small intestine, ampulla coli, isthmus coli, rectum, and the distance from the coprodeum to the vent opening. Twenty-two healthy adult bearded dragons (13 females, 9 males) maintained under standardized husbandry conditions underwent a physical examination, blood collection, and whole-body dorsoventral and lateral survey radiographs; these animals were used to provide the radiographic images of the complete digestive tract. For the subsequent contrast passage studies, two different contrast media, barium sulfate (BaSO4, Barilux suspension) and an iodinated ionic radiocontrast agent (Sodium meglumine amidotrizoate [SMAT], Gastrografin), were used. Water-diluted Barilux suspension (dose 9 ml/kg) was administered orally to 5 bearded dragons, while Gastrografin (dose 5ml/kg) was administered orally to 21 bearded dragons. Four animals were used for both contrast media studies, but received a break of four weeks in between. Dorsoventral and laterolateral radiographs were collected at 0 (baseline), 15, 30, and 45 minutes and 1, 2, 3, 4, 5, 6, 8, 10, 12, 24, 30, and 36 hours after each contrast medium was administered. Both contrast media were found to illustrate the alimentary tracts in the adult bearded dragons. Transit time was substantially faster with SMAT, and SMAT illustrated the entire gastrointestinal tract within 36 hours; BaSO4 did not fully illustrate the gastrointestinal tract in 36 hours. These results might serve as a guideline for the interpretation of subsequent contrast studies in this lizard species
Correction: Gross anatomy, histology and blood vessel topography of the alimentary canal of the Inland Bearded Dragon (Pogona vitticeps).
[This corrects the article DOI: 10.1371/journal.pone.0234736.]