16 research outputs found

    Blutbasierte Mikrozirkulationsmarker bei der Alzheimer-Demenz

    Get PDF

    Songbirds use scent cues to relocate to feeding sites after displacement: An experiment in great tits (Parus major)

    Get PDF
    Air-borne chemicals are highly abundant sensory cues and their use in navigation might be one of the major evolutionary mechanisms explaining the development of olfaction in animals. Despite solid evidence for the importance of olfaction in avian life (e.g., foraging or mating), the importance of chemical cues in avian orientation remains controversial. In particular, songbirds are sorely neglected models, despite their remarkable orientation skills. Here we show that great tits (Parus major) require olfactory cues to orientate toward winter-feeding sites within their home range after displacement. Birds that received an olfaction-depriving treatment were impaired in homing. However, the return rates between olfaction-deprived and control individuals did not differ. Birds with decreased perception of olfactory cues required more time to return to the winter feeding sites. This effect became apparent when the distance between the releasing and capture sites was greater. Our results indicate that even in a familiar environment with possible visual landmarks, scent cues might serve as an important source of information for orientation

    The 2015 Annual Meeting of SETAC German Language Branch in Zurich (7-10 September, 2015): ecotoxicology and environmental chemistry-from research to application

    Get PDF
    This report provides a brief review of the 20th annual meeting of the German Language Branch of the Society of Environmental Toxicology and Chemistry (SETAC GLB) held from September 7th to 10th 2015 at ETH (Swiss Technical University) in Zurich, Switzerland. The event was chaired by Inge Werner, Director of the Swiss Centre for Applied Ecotoxicology (Ecotox Centre) Eawag-EPFL, and organized by a team from Ecotox Centre, Eawag, Federal Office of the Environment, Federal Office of Agriculture, and Mesocosm GmbH (Germany). Over 200 delegates from academia, public agencies and private industry of Germany, Switzerland and Austria attended and discussed the current state of science and its application presented in 75 talks and 83 posters. In addition, three invited keynote speakers provided new insights into scientific knowledge ‘brokering’, and—as it was the International Year of Soil—the important role of healthy soil ecosystems. Awards were presented to young scientists for best oral and poster presentations, and for best 2014 master and doctoral theses. Program and abstracts of the meeting (mostly in German) are provided as Additional file 1

    A biochemical marker panel in MRI-proven hyperacute ischemic stroke-a prospective study

    No full text
    Abstract Background Computer tomography (CT) is still the fastest and most robust technique to rule out ICH in acute stroke. However CT-sensitivity for detection of ischemic stroke in the hyperacute phase is still relatively low. Moreover the validity of pure clinical judgment is diminished by several stroke imitating diseases (mimics). The "Triage® Stroke Panel", a biochemical multimarker assay, detects Brain Natriuretic Peptide (BNP), D-Dimers (DD), Matrix-Metalloproteinase-9 (MMP-9), and S100B protein and promptly generates a Multimarkerindex of these values (MMX). This index has been licensed for diagnostic purposes as it might increase the validity of the clinical diagnosis to differentiate between stroke imitating diseases and true ischemic strokes. Our aim was to prove whether the panel is a reliable indicating device for the diagnosis of ischemic stroke in a time window of 6 h to fasten the pre- and intrahospital pathway to fibrinolysis. Methods We investigated all consecutive patients admitted to our stroke unit during a time period of 5 months. Only patients with clinical investigation, blood sample collection and MRI within six hours from symptom onset were included. Values of biochemical markers were analyzed according to the results of diffusion weighted MR-imaging. In addition MMX-values in ischemic strokes were correlated with the TOAST-criteria. For statistical analysis the SAS Analyst software was used. Correlation coefficients were analyzed and comparison tests for two or more groups were performed. Statistical significance was assumed in case of p Results In total 174 patients were included into this study (n = 100 strokes, n = 49 mimics, n = 25 transitoric ischemic attacks). In patients with ischemic strokes the mean NIHSS was 7.6 ± 6.2, while the mean DWI-lesion volume was 20.6 ml (range 186.9 to 4.2 ml). According to the MMX or the individual markers there was no statistically significant difference between the group of ischemic strokes and the group of mimics. Moreover the correlation of the index and the DWI-lesion-volume was poor (p = 0.2). Conclusions In our setting of acute MRI-proven ischemic stroke the used multimarker-assay (Triage® Stroke Panel) was not of diagnostic validity. We do not recommend to perform this assay as this might lead to a unjustified time delay.</p

    Aryl Hydrocarbon Receptor Activation by Benzo[<i>a</i>]pyrene Prevents Development of Septic Shock and Fatal Outcome in a Mouse Model of Systemic <i>Salmonella enterica</i> Infection

    No full text
    This study focused on immunomodulatory effects of aryl hydrocarbon receptor (AhR) activation through benzo[a]pyrene (BaP) during systemic bacterial infection. Using a well-established mouse model of systemic Salmonella enterica (S.E.) infection, we studied the influence of BaP on the cellular and humoral immune response and the outcome of disease. BaP exposure significantly reduced mortality, which is mainly caused by septic shock. Surprisingly, the bacterial burden in BaP-exposed surviving mice was significantly higher compared to non-exposed mice. During the early phase of infection (days 1–3 post-infection (p.i.)), the transcription of proinflammatory factors (i.e., IL-12, IFN-γ, TNF-α, IL-1β, IL-6, IL-18) was induced faster under BaP exposure. Moreover, BaP supported the activity of antigen-presenting cells (i.e., CD64 (FcγRI), MHC II, NO radicals, phagocytosis) at the site of infection. However, early in infection, the anti-inflammatory cytokines IL-10 and IL-22 were also locally and systemically upregulated in BaP-exposed S.E.-infected mice. BaP-exposure resulted in long-term persistence of salmonellae up to day 90 p.i., which was accompanied by significantly elevated S.E.-specific antibody responses (i.e., IgG1, IgG2c). In summary, these data suggest that BaP-induced AhR activation is capable of preventing a fatal outcome of systemic S.E. infection, but may result in long-term bacterial persistence, which, in turn, may support the development of chronic inflammation

    Songbirds use scent cues to relocate to feeding sites after displacement: An experiment in great tits (Parus major)

    No full text
    Air-borne chemicals are highly abundant sensory cues and their use in navigation might be one of the major evolutionary mechanisms explaining the development of olfaction in animals. Despite solid evidence for the importance of olfaction in avian life (e.g., foraging or mating), the importance of chemical cues in avian orientation remains controversial. In particular, songbirds are sorely neglected models, despite their remarkable orientation skills. Here we show that great tits (Parus major) require olfactory cues to orientate toward winter-feeding sites within their home range after displacement. Birds that received an olfaction-depriving treatment were impaired in homing. However, the return rates between olfaction-deprived and control individuals did not differ. Birds with decreased perception of olfactory cues required more time to return to the winter feeding sites. This effect became apparent when the distance between the releasing and capture sites was greater. Our results indicate that even in a familiar environment with possible visual landmarks, scent cues might serve as an important source of information for orientation

    Understanding habitat selection of range-expanding populations of large carnivores: 20 years of grey wolves (Canis lupus) recolonizing Germany

    No full text
    &lt;p&gt;&lt;strong&gt;Aim&lt;/strong&gt;: The non-stationarity in habitat selection of expanding populations poses a significant challenge for spatial forecasting. Focusing on the grey wolf (&lt;em&gt;Canis lupus&lt;/em&gt;) natural recolonization of Germany, we compared the performance of different distribution modelling approaches for predicting habitat suitability in unoccupied areas. Furthermore, we analysed whether grey wolf showed non-stationarity in habitat selection in newly colonized areas, which will impact the predictions for potential habitat.&lt;/p&gt; &lt;p&gt;&lt;strong&gt;Location&lt;/strong&gt;: Germany&lt;/p&gt; &lt;p&gt;&lt;strong&gt;Methods&lt;/strong&gt;: Using telemetry data as presence points, we compared the predictive performance of five modelling approaches based on combinations of distribution modelling algorithms –GLMM, MaxEnt, and ensemble modelling– and two background point selection strategies. We used a homogeneous Poisson point process to draw background points from either the minimum convex polygons derived from telemetry or the whole area known to be occupied by wolves. Models were fit to the data of the first years and validated against independent data representing the expansion of the species. The best-performing approach was then used to further investigate non-stationarity in the species' response in spatiotemporal restricted datasets that represented different colonization steps.&lt;/p&gt; &lt;p&gt;&lt;strong&gt;Results&lt;/strong&gt;: Whilst all approaches performed similarly when evaluated against a subset of the data used to fit the models, the ensemble model based on integrated data performed best when predicting range expansion. Models for subsequent colonization steps differed substantially from the global model, highlighting the non-stationarity of wolf habitat selection towards human disturbance during the colonization process.&lt;/p&gt; &lt;p&gt;&lt;strong&gt;Main conclusions&lt;/strong&gt;: While telemetry-only data overfitted the models, using all available datasets increased the reliability of the range expansion forecasts. The non-stationarity in habitat selection pointed to wolves settling in the best areas first, and filling in nearby lower-quality habitat as the population increases. Our results caution against spatial extrapolation and space-for-time substitutions in habitat models, at least with expanding species.&lt;/p&gt;&lt;p&gt;Datasets are specially optimised for R, but they can open with any software that reads .csv files.&lt;/p&gt;&lt;p&gt;Funding provided by: Bundesamt für Naturschutz&lt;br&gt;Crossref Funder Registry ID: http://dx.doi.org/10.13039/501100010415&lt;br&gt;Award Number: FKZ 3515 82 4100&lt;/p&gt;&lt;p&gt;Our wolf data comprised two complementary datasets. Our first dataset consisted of GPS telemetry locations of 20 collared resident wolves from 2009 to 2018. This data is provided at a 50km resolution due to species conservation concerns. Our final telemetry dataset consisted of 3,841 locations from 21 home ranges (183 ± 104 locations per home range). Our second dataset consisted of centroids of known wolf territories monitored annually since 2000 (&lt;a href="http://www.dbb-wolf.de/Wolfsvorkommen/territorien/karte-der-territorien"&gt;www.dbb-wolf.de/Wolfsvorkommen/territorien/karte-der-territorien).&lt;/a&gt; The centroids of the territories were assessed after the end of the monitoring year, as the central point of all activity signs (scats; camera trap images; telemetry data, when available; opportunistic sightings; hunt remains) that were assigned to the same territory. Territory areas for our study were delineated with a radius of 8 km around their centroids, resulting in territory sizes of approx. 200 km².&lt;/p&gt

    LPJmL4 model output for the publications in GMD: LPJmL4 - a dynamic global vegetation model with managed land: Part I – Model description and Part II – Model evaluation

    No full text
    LPJmL4 is a process-based model that simulates climate and land-use change impacts on the terrestrial biosphere, the water and carbon cycle and on agricultural production. The LPJmL4 model combines plant physiological relations, generalized empirically established functions and plant trait parameters. The model incorporates dynamic land use at the global scale and is also able to simulate the production of woody and herbaceous short-rotation bio-energy plantations. Grid cells may contain one or several types of natural or agricultural vegetation. A comprehensive description of the model is given by Schaphoff et al. (2017a, http://doi.org/10.5194/gmd-2017-145). The data presented here represent some standard LPJmL4 model results for the land surface described in Schaphoff et al. (2017a,). Additionally, these results are evaluated in the companion paper of Schaphoff et al. (2017b, http://doi.org/10.5194/gmd-2017-146). The data collection includes some key output variables made with different model setups described by Schaphoff et al. (2017b). The data cover the entire globe with a spatial resolution of 0.5° and temporal coverage from 1901-2011 on an annual basis for soil, vegetation, aboveground and litter carbon as well as for vegetation distribution, crop yields, sowing dates, maximum thawing depth, and fire carbon emissions. Vegetation distribution is given for each plant functional type (PFT), crop yields, and sowing dates are given for each crop functional type (CFT), respectively. Monthly data are provided for the carbon fluxes (net primary production, gross primary production, soil respiration) and the water fluxes (transpiration, evaporation, interception, runoff, and discharge) and for absorbed photosynthetically active radiation (FAPAR) and albedo

    Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology

    No full text
    In biological fluids, proteins bind to the surface of nanoparticles to form a coating known as the protein corona, which can critically affect the interaction of the nanoparticles with living systems. As physiological systems are highly dynamic, it is important to obtain a time-resolved knowledge of protein-corona formation, development and biological relevancy. Here we show that label-free snapshot proteomics can be used to obtain quantitative time-resolved profiles of human plasma coronas formed on silica and polystyrene nanoparticles of various size and surface functionalization. Complex time- and nanoparticle-specific coronas, which comprise almost 300 different proteins, were found to form rapidly (<0.5 minutes) and, over time, to change significantly in terms of the amount of bound protein, but not in composition. Rapid corona formation is found to affect haemolysis, thrombocyte activation, nanoparticle uptake and endothelial cell death at an early exposure time
    corecore