6 research outputs found

    Coupled Electrostatic and Hydrophobic Destabilisation of the Gelsolin-Actin Complex Enables Facile Detection of Ovarian Cancer Biomarker Lysophosphatidic Acid

    No full text
    Lysophosphatidic acid (LPA) is a promising biomarker candidate to screen for ovarian cancer (OC) and potentially stratify and treat patients according to disease stage. LPA is known to target the actin-binding protein gelsolin which is a key regulator of actin filament assembly. Previous studies have shown that the phosphate headgroup of LPA alone is inadequate to bind to the short chain of amino acids in gelsolin known as the PIP2-binding domain. Thus, the molecular-level detail of the mechanism of LPA binding is poorly understood. Here, we model LPA binding to the PIP2-binding domain of gelsolin in the gelsolin-actin complex through extensive ten-microsecond atomistic molecular dynamics (MD) simulations. We predict that LPA binding causes a local conformational rearrangement due to LPA interactions with both gelsolin and actin residues. These conformational changes are a result of the amphipathic nature of LPA, where the anionic phosphate, polar glycerol and ester groups, and lipophilic aliphatic tail mediate LPA binding via charged electrostatic, hydrogen bonding, and van der Waals interactions. The negatively-charged LPA headgroup binds to the PIP2-binding domain of gelsolin-actin while its hydrophobic tail is inserted into actin, creating a strong LPA-insertion pocket that weakens the gelsolin–actin interface. The computed structure, dynamics, and energetics of the ternary gelsolin–LPA–actin complex confirms that a quantitative OC assay is possible based on LPA-triggered actin release from the gelsolin-actin complex

    Coupled electrostatic and hydrophobic destabilisation of the gelsolin-actin complex enables facile detection of ovarian cancer biomarker lysophosphatidic acid

    No full text
    Lysophosphatidic acid (LPA) is a promising biomarker candidate to screen for ovarian cancer (OC) and potentially stratify and treat patients according to disease stage. LPA is known to target the actin-binding protein gelsolin which is a key regulator of actin filament assembly. Previous studies have shown that the phosphate headgroup of LPA alone is inadequate to bind to the short chain of amino acids in gelsolin known as the PIP2 -binding domain. Thus, the molecular-level detail of the mechanism of LPA binding is poorly understood. Here, we model LPA binding to the PIP2 - binding domain of gelsolin in the gelsolin-actin complex through extensive ten-microsecond atomistic molecular dynamics (MD) simulations. We predict that LPA binding causes a local conformational rearrangement due to LPA interactions with both gelsolin and actin residues. These conformational changes are a result of the amphipathic nature of LPA, where the anionic phosphate, polar glycerol and ester groups, and lipophilic aliphatic tail mediate LPA binding via charged electrostatic, hydrogen bonding, and van der Waals interactions. The negatively-charged LPA headgroup binds to the PIP2 - binding domain of gelsolin-actin while its hydrophobic tail is inserted into actin, creating a strong LPA-insertion pocket that weakens the gelsolin–actin interface. The computed structure, dynamics, and energetics of the ternary gelsolin–LPA–actin complex confirms that a quantitative OC assay is possible based on LPA-triggered actin release from the gelsolin-actin complex</p

    Thiol-Based Probe Linker with Antifouling Properties for Aptasensor Development

    No full text
    Surfaces with antifouling properties are critical for optimizing biosensors to improve the selectivity and specificity of analyte detection in complex biological samples. This work describes the four-step synthesis of 3-dithiothreitol propanoic acid (DTTCOOH), a new antifouling thiol linker that (a) significantly reduces fouling of raw human serum samples and (b) binds amino receptors via its terminal carboxylic acid group. DTTCOOH was successfully functionalized on quartz crystal microbalance (QCM) discs and used to anchor penicillin-binding aptamers. Relative to bare and coated (11-mercaptoundecanoic acid (MUA) and 1-undecanethiol (UDT)) QCM crystals, DTTCOOH’s antifouling improved by approximately 75–86%. Following aptamer/ethanolamine extension, the modified DTTCOOH layer reduced serum fouling by approximately 95–97% compared to bare and coated (MUA, UDT) crystals. QCM with dissipation (QCM-D) monitoring, contact goniometry, and cyclic voltammetry techniques were used to compare the DTTCOOH surfaces with quartz crystals functionalized with hydrophobic and hydrophilic molecules

    Thiol-Based Probe Linker with Antifouling Properties for Aptasensor Development

    No full text
    Surfaces with antifouling properties are critical for optimizing biosensors to improve the selectivity and specificity of analyte detection in complex biological samples. This work describes the four-step synthesis of 3-dithiothreitol propanoic acid (DTTCOOH), a new antifouling thiol linker that (a) significantly reduces fouling of raw human serum samples and (b) binds amino receptors via its terminal carboxylic acid group. DTTCOOH was successfully functionalized on quartz crystal microbalance (QCM) discs and used to anchor penicillin-binding aptamers. Relative to bare and coated (11-mercaptoundecanoic acid (MUA) and 1-undecanethiol (UDT)) QCM crystals, DTTCOOH&rsquo;s antifouling improved by approximately 75&ndash;86%. Following aptamer/ethanolamine extension, the modified DTTCOOH layer reduced serum fouling by approximately 95&ndash;97% compared to bare and coated (MUA, UDT) crystals. QCM with dissipation (QCM-D) monitoring, contact goniometry, and cyclic voltammetry techniques were used to compare the DTTCOOH surfaces with quartz crystals functionalized with hydrophobic and hydrophilic molecules

    Detection of E. coli Bacteria in Milk by an Acoustic Wave Aptasensor with an Anti-Fouling Coating

    No full text
    Milk is a significant foodstuff around the world, being produced and consumed in large quantities. The safe consumption of milk requires that the liquid has an acceptably low level of microbial contamination and has not been subjected to spoiling. Bacterial safety limits in milk vary by country but are typically in the thousands per mL of sample. To rapidly determine if samples contain an unsafe level of bacteria, an aptamer-based sensor specific to Escherichia coli bacteria was developed. The sensor is based on an ultra-high frequency electromagnetic piezoelectric acoustic sensor device (EMPAS), with the aptamer being covalently bound to the sensor surface by the anti-fouling linker, MEG-Cl. The sensor is capable of the selective measurement of E. coli in PBS and in cow&rsquo;s milk samples down to limits of detection of 35 and 8 CFU/mL, respectively, which is well below the safe limits for commercial milk products. This sensing system shows great promise for the milk industry for the purpose of rapid verification of product safety

    Design and Characterization of a Dual-Protein Strategy for an Early-Stage Assay of Ovarian Cancer Biomarker Lysophosphatidic Acid

    No full text
    The overall 5-year survival rate of ovarian cancer (OC) is generally low as the disease is often diagnosed at an advanced stage of progression. To save lives, OC must be identified in its early stages when treatment is most effective. Early-stage OC causes the upregulation of lysophosphatidic acid (LPA), making the molecule a promising biomarker for early-stage detection. An LPA assay can additionally stage the disease since LPA levels increase with OC progression. This work presents two methods that demonstrate the prospective application for detecting LPA: the electromagnetic piezoelectric acoustic sensor (EMPAS) and a chemiluminescence-based iron oxide nanoparticle (IONP) approach. Both methods incorporate the protein complex gelsolin–actin, which enables testing for detection of the biomarker as the binding of LPA to the complex results in the separation of gelsolin from actin. The EMPAS was characterized with contact angle goniometry and atomic force microscopy, while gelsolin–actin-functionalized IONPs were characterized with transmission electron microscopy and Fourier transform infrared spectroscopy. In addition to characterization, LPA detection was demonstrated as a proof-of-concept in Milli-Q water, buffer, or human serum, highlighting various LPA assays that can be developed for the early-stage detection of OC
    corecore