14 research outputs found

    Social network structure and the spread of complex contagions from a population genetics perspective

    Full text link
    Ideas, behaviors, and opinions spread through social networks. If the probability of spreading to a new individual is a non-linear function of the fraction of the individuals' affected neighbors, such a spreading process becomes a "complex contagion". This non-linearity does not typically appear with physically spreading infections, but instead can emerge when the concept that is spreading is subject to game theoretical considerations (e.g. for choices of strategy or behavior) or psychological effects such as social reinforcement and other forms of peer influence (e.g. for ideas, preferences, or opinions). Here we study how the stochastic dynamics of such complex contagions are affected by the underlying network structure. Motivated by simulations of complex epidemics on real social networks, we present a general framework for analyzing the statistics of contagions with arbitrary non-linear adoption probabilities based on the mathematical tools of population genetics. Our framework provides a unified approach that illustrates intuitively several key properties of complex contagions: stronger community structure and network sparsity can significantly enhance the spread, while broad degree distributions dampen the effect of selection. Finally, we show that some structural features can exhibit critical values that demarcate regimes where global epidemics become possible for networks of arbitrary size. Our results draw parallels between the competition of genes in a population and memes in a world of minds and ideas. Our tools provide insight into the spread of information, behaviors, and ideas via social influence, and highlight the role of macroscopic network structure in determining their fate

    Trust based attachment

    Full text link
    In social systems subject to indirect reciprocity, a positive reputation is key for increasing one's likelihood of future positive interactions. The flow of gossip can amplify the impact of a person's actions on their reputation depending on how widely it spreads across the social network, which leads to a percolation problem. To quantify this notion, we calculate the expected number of individuals, the "audience", who find out about a particular interaction. For a potential donor, a larger audience constitutes higher reputational stakes, and thus a higher incentive, to perform "good" actions in line with current social norms. For a receiver, a larger audience therefore increases the trust that the partner will be cooperative. This idea can be used for an algorithm that generates social networks, which we call trust based attachment (TBA). TBA produces graphs that share crucial quantitative properties with real-world networks, such as high clustering, small-world behavior, and power law degree distributions. We also show that TBA can be approximated by simple friend-of-friend routines based on triadic closure, which are known to be highly effective at generating realistic social network structures. Therefore, our work provides a new justification for triadic closure in social contexts based on notions of trust, gossip, and social information spread. These factors are thus identified as potential significant influences on how humans form social ties

    The Tension on dsDNA Bound to ssDNA/RecA Filaments May Play an Important Role in Driving Efficient and Accurate Homology Recognition and Strand Exchange

    Full text link
    It is well known that during homology recognition and strand exchange the double stranded DNA (dsDNA) in DNA/RecA filaments is highly extended, but the functional role of the extension has been unclear. We present an analytical model that calculates the distribution of tension in the extended dsDNA during strand exchange. The model suggests that the binding of additional dsDNA base pairs to the DNA/RecA filament alters the tension in dsDNA that was already bound to the filament, resulting in a non-linear increase in the mechanical energy as a function of the number of bound base pairs. This collective mechanical response may promote homology stringency and underlie unexplained experimental results

    Measuring acute effects of subanesthetic ketamine on cerebrovascular hemodynamics in humans using TD-fNIRS

    Full text link
    Quantifying neural activity in natural conditions (i.e. conditions comparable to the standard clinical patient experience) during the administration of psychedelics may further our scientific understanding of the effects and mechanisms of action. This data may facilitate the discovery of novel biomarkers enabling more personalized treatments and improved patient outcomes. In this single-blind, placebo-controlled study with a non-randomized design, we use time-domain functional near-infrared spectroscopy (TD-fNIRS) to measure acute brain dynamics after intramuscular subanesthetic ketamine (0.75 mg/kg) and placebo (saline) administration in healthy participants (n = 15, 8 females, 7 males, age 32.4 ± 7.5 years) in a clinical setting. We found that the ketamine administration caused an altered state of consciousness and changes in systemic physiology (e.g. increase in pulse rate and electrodermal activity). Furthermore, ketamine led to a brain-wide reduction in the fractional amplitude of low frequency fluctuations, and a decrease in the global brain connectivity of the prefrontal region. Lastly, we provide preliminary evidence that a combination of neural and physiological metrics may serve as predictors of subjective mystical experiences and reductions in depressive symptomatology. Overall, our study demonstrated the successful application of fNIRS neuroimaging to study the physiological effects of the psychoactive substance ketamine in humans, and can be regarded as an important step toward larger scale clinical fNIRS studies that can quantify the impact of psychedelics on the brain in standard clinical settings

    Acute effects of subanesthetic ketamine on cerebrovascular hemodynamics in humans: A TD-fNIRS neuroimaging study

    Full text link
    Quantifying neural activity in natural conditions (i.e. conditions comparable to the standard clinical patient experience) during the administration of psychedelics may further our scientific understanding of the effects and mechanisms of action. This data may facilitate the discovery of novel biomarkers enabling more personalized treatments and improved patient outcomes. In this single-blind, placebo-controlled study with a non-randomized design, we use time-domain functional near-infrared spectroscopy (TD-fNIRS) to measure acute brain dynamics after intramuscular subanesthetic ketamine (0.75 mg/kg) and placebo (saline) administration in healthy participants (n= 15, 8 females, 7 males, age 32.4 ± 7.5 years) in a clinical setting. We found that the ketamine administration caused an altered state of consciousness and changes in systemic physiology (e.g. increase in pulse rate and electrodermal activity). Furthermore, ketamine led to a brain-wide reduction in the fractional amplitude of low frequency fluctuations (fALFF), and a decrease in the global brain connectivity of the prefrontal region. Lastly, we provide preliminary evidence that a combination of neural and physiological metrics may serve as predictors of subjective mystical experiences and reductions in depressive symptomatology. Overall, our studies demonstrated the successful application of fNIRS neuroimaging to study the physiological effects of the psychoactive substance ketamine and can be regarded as an important step toward larger scale clinical fNIRS studies that can quantify the impact of psychedelics on the brain in standard clinical settings

    Implementation of AI/Deep Learning Disruption Predictor into a Plasma Control System

    Full text link
    This paper reports on advances to the state-of-the-art deep-learning disruption prediction models based on the Fusion Recurrent Neural Network (FRNN) originally introduced a 2019 Nature publication. In particular, the predictor now features not only the disruption score, as an indicator of the probability of an imminent disruption, but also a sensitivity score in real-time to indicate the underlying reasons for the imminent disruption. This adds valuable physics-interpretability for the deep-learning model and can provide helpful guidance for control actuators now that it is fully implemented into a modern Plasma Control System (PCS). The advance is a significant step forward in moving from modern deep-learning disruption prediction to real-time control and brings novel AI-enabled capabilities relevant for application to the future burning plasma ITER system. Our analyses use large amounts of data from JET and DIII-D vetted in the earlier NATURE publication. In addition to when a shot is predicted to disrupt, this paper addresses reasons why by carrying out sensitivity studies. FRNN is accordingly extended to use many more channels of information, including measured DIII-D signals such as (i) the n1rms signal that is correlated with the n =1 modes with finite frequency, including neoclassical tearing mode and sawtooth dynamics, (ii) the bolometer data indicative of plasma impurity content, and (iii) q-min, the minimum value of the safety factor relevant to the key physics of kink modes. The additional channels and interpretability features expand the ability of the deep learning FRNN software to provide information about disruption subcategories as well as more precise and direct guidance for the actuators in a plasma control system

    Kernel Flow:a high channel count scalable time-domain functional near-infrared spectroscopy system

    Get PDF
    Significance: Time-domain functional near-infrared spectroscopy (TD-fNIRS) has been considered as the gold standard of noninvasive optical brain imaging devices. However, due to the high cost, complexity, and large form factor, it has not been as widely adopted as continuous wave NIRS systems. Aim: Kernel Flow is a TD-fNIRS system that has been designed to break through these limitations by maintaining the performance of a research grade TD-fNIRS system while integrating all of the components into a small modular device. Approach: The Kernel Flow modules are built around miniaturized laser drivers, custom integrated circuits, and specialized detectors. The modules can be assembled into a system with dense channel coverage over the entire head. Results: We show performance similar to benchtop systems with our miniaturized device as characterized by standardized tissue and optical phantom protocols for TD-fNIRS and human neuroscience results. Conclusions: The miniaturized design of the Kernel Flow system allows for broader applications of TD-fNIRS.</p
    corecore