29 research outputs found

    LEAP-2017 Simulation Exercise: Calibration of Constitutive Models and Simulation of the Element Tests

    Get PDF
    This paper presents a summary of the element test simulations (calibration simulations) submitted by 11 numerical simulation (prediction) teams that participated in the LEAP-2017 prediction exercise. A significant number of monotonic and cyclic triaxial (Vasko, An investigation into the behavior of Ottawa sand through monotonic and cyclic shear tests. Masters Thesis, The George Washington University, 2015; Vasko et al., LEAP-GWU-2015 Laboratory Tests. DesignSafe-CI, Dataset, 2018; El Ghoraiby et al., LEAP 2017: Soil characterization and element tests for Ottawa F65 sand. The George Washington University, Washington, DC, 2017; El Ghoraiby et al., LEAP-2017 GWU Laboratory Tests. DesignSafe-CI, Dataset, 2018; El Ghoraiby et al., Physical and mechanical properties of Ottawa F65 Sand. In B. Kutter et al. (Eds.), Model tests and numerical simulations of liquefaction and lateral spreading: LEAP-UCD-2017. New York: Springer, 2019) and direct simple shear tests (Bastidas, Ottawa F-65 Sand Characterization. PhD Dissertation, University of California, Davis, 2016) are available for Ottawa F-65 sand. The focus of this element test simulation exercise is to assess the performance of the constitutive models used by participating team in simulating the results of undrained stress-controlled cyclic triaxial tests on Ottawa F-65 sand for three different void ratios (El Ghoraiby et al., LEAP 2017: Soil characterization and element tests for Ottawa F65 sand. The George Washington University, Washington, DC, 2017; El Ghoraiby et al., LEAP-2017 GWU Laboratory Tests. DesignSafe-CI, Dataset, 2018; El Ghoraiby et al., Physical and mechanical properties of Ottawa F65 Sand. In B. Kutter et al. (Eds.), Model tests and numerical simulations of liquefaction and lateral spreading: LEAP-UCD-2017. New York: Springer, 2019). The simulated stress paths, stress strain responses, and liquefaction strength curves show that majority of the models used in this exercise are able to provide a reasonably good match to liquefaction strength curves for the highest void ratio (0.585) but the differences between the simulations and experiments become larger for the lower void ratios (0.542 and 0.515)

    LEAP-2017: Comparison of the Type-B Numerical Simulations with Centrifuge Test Results

    Get PDF
    This paper presents comparisons of 11 sets of Type-B numerical simulations with the results of a selected set of centrifuge tests conducted in the LEAP-2017 project. Time histories of accelerations, excess pore water pressures, and lateral displacement of the ground surface are compared to the results of nine centrifuge tests. A number of numerical simulations showed trends similar to those observed in the experiments. While achieving a close match to all measured responses (accelerations, pore pressures, and displacements) is quite challenging, the numerical simulations show promising capabilities that can be further improved with the availability of additional high-quality experimental results

    Geotechnical Investigation of Pore Pressure Behavior of Muddy Seafloor Sediments in an Arctic Permafrost Environment

    Full text link
    Herschel Island, Yukon, Canada, is made of ice-rich permafrost and is affected by high rates of coastal erosion, likely to increase with decreasing summer sea ice extent. During an interdisciplinary expedition to Herschel Island in July 2014, geotechnical investigations were carried out in shallow water environments of up to 20 m water depth and at different beaches. The free-fall penetrometer BlueDrop was deployed at 299 positions. Apart from obtaining vertical profiles of sediment strength and the pore pressure response upon impact, the pore pressure evolution over a period of one hour after deployment was investigated. The focus area for these tests was Pauline Cove, located at the south-eastern side of the island, being sheltered by a spit from the open Beaufort Sea and affected by a number of old and young retrogressive thaw slumps, delivering large amounts of mud. The sediment resistance profiles revealed up to three distinct layers of sediment strength, expressing different consolidation states, or possibly changes in sediment composition. This stratification was supported by the pore pressure results, including pore pressure evolution “on-the-flight” during penetrometer penetration as well as pore pressure evolution at maximum penetration depth with the penetrometer being at rest. The sediment surface layer 1 was characterized by a thickness of 5–20 cm depending on the respective location, low sediment resistance and predominantly hydrostatic pressure. It most likely has frequently been reworked by wave action, and exhibited similar geotechnical signatures as fluid mud. Layer 2 reached sediment depths of 30–60 cm, showed an increase in sediment resistance and distinct subhydrostatic pore pressures during penetration, while pore pressures increased in an asymptotic manner to suprahydrostatic (160–180% of hydrostatic pressure) over an observation period of 30–50 minutes. Based on comparison to other examples from the literature, it was hypothesized that layer 2 was composed of overconsolidated mud. Layer 3 featured a significant increase in sediment resistance as well as pore pressure during penetration. As soon as the probe came to rest, the pressure decreased significantly to subhydrostatic conditions, before swinging back to being suprahydrostatic and then slowly dissipating. A similar behavior has been associated to silty sands and high bulk densities. Here, it may suggest a change in sediment composition, likely influenced by coarser nearshore and beach sediments, representing also a denser sediment matrix. The pore pressure results will complement the geological and geotechnical characterization of the coastal zone of Hershel Island, and contribute to the investigation of erosion and deposition processes. Copyright © 2015 by ASM
    corecore