23 research outputs found

    Effect of food concentration and type of diet on Acartia survival and naupliar development

    Get PDF
    We have performed life table experiments to investigate the effects of different food types and concentrations on the larval development and survival up to adulthood of Acartia tonsa. The food species offered comprised a wide taxonomic spectrum: the pigmented flagellates Isochrysis galbana, Emiliania huxleyi, Rhodomonas sp., Prorocentrum minimum, the diatom Thalassiosira weissflogii, grown on medium offering enriched macronutrient concentrations and the ciliate Euplotes sp. initially cultured on Rhodomonas. For the ciliate species, also the functional response was studied. In order to avoid limitation by mineral nutrients, food algae have been taken from the exponential growth phase of the nutrient replete cultures. The suitability of Rhodomonas as a food source throughout the entire life cycle was not a surprise. However, in contrast to much of the recent literature about the inadequacy or even toxicity of diatoms, we found that also Thalassiosira could support Acartia-development through the entire life cycle. On the other hand, Acartia could not complete its life cycle when fed with the other food items, Prorocentrum having adverse effects even when mixed with Rhodomonas and Thalassiosira. Isochrysis well supported naupliar survival and development, but was insufficient to support further development until reproduction. With Emiliania and Euplotes, nauplii died off before most of them could reach the first copepodite stages. Acartia-nauplii showed a behavioral preference for Euplotes-feeding over diatom feeding, but nevertheless Euplotes was an insufficient diet to complete development beyond the naupliar stages

    Feeding selectivities and food niche separation of Acartia clausi, Penilia avirostris (Crustacea) and Doliolum denticulatum (Thaliacea) in Blanes Bay (Catalan Sea, NW Mediterranean)

    Full text link
    Selectivity-size spectra, clearance and ingestion rates and assimilation efficiencies of Acartia clausi (Copepoda), Penilia avirostris (Cladocera) and Doliolum denticulatum (Doliolida) from Blanes Bay (Catalan Sea, NW Mediterranean) were evaluated in grazing experiments over a wide range of food concentrations (0.02–8.8 mm3 L−1 plankton assemblages from Blanes Bay, grown in mesocosms at different nutrient levels). Acartia clausi reached the highest grazing coefficients for large algae >70 μm (longest linear extension), P. avirostris for intermediate food sizes between 15 and 70 μm, and D. denticulatum for small sizes from 2.5 to 15 μm. Penilia avirostris and D. denticulatum acted as passive filter-feeders. Acartia clausi gave some evidence for a supplementary raptorial feeding mode. Effective food concentration (EFC) decreased linearly with increasing nutrient enrichment for D. denticulatum and followed domed curves for A. clausi and for P. avirostris with maximum values at intermediate and high enrichment levels, respectively. Clearance rates of crustacean species showed curvilinear responses with narrow modal ranges to increasing food concentration. Clearance rates of D. denticulatum increased abruptly and levelled into a plateau at low food concentrations. Mean clearance rates were 13.9, 25.5 and 64.1 mL ind.−1 day−1, respectively. No clearance could be detected for A. clausi at food concentrations <0.1 mm3 L−1 and for P. avirostris at food concentrations ≤0.02 mm3 L−1. Ingestion rates indicate a rectilinear functional response for A. clausi and for P. avirostris and showed a sigmoidal curve for D. denticulatum. Mean ingestion rates were 1.3, 2.8 and 7.7 μg C μg Cind.−1 day−1, respectively. Conversion of ingested carbon to tissue was 30–80% for the investigated crustaceans and 20–50% for doliolids. Food niche calculations suggest that food niche separation may explain the coexistence of the three species in summer in Blanes Bay

    Pelagic food web configurations at different levels of nutrient richness and their implications for the ratio fish production: primary production

    Full text link
    Based on existing knowledge about phytoplankton responses to nutrients and food size spectra of herbivorous zooplankton, three different configurations of pelagic food webs are proposed for three different types of marine nutrient regimes: (1) upwelling systems, (2) oligotrophic oceanic systems, (3) eutrophicated coastal systems. Up-welling systems are characterised by high levels of plant nutrients and high ratios of Si to N and R. Phytoplankton consists mainly of diatoms together with a subdominant contribution of flagellates. Most phytoplankton falls into the food spectrum of herbivorous, crustacean zooplankton. Therefore, herbivorous crustaceans occupy trophic level 2 and zooplanktivorous fish occupy trophic level 3. Phytoplankton in oligotrophic, oceanic systems is dominated by picoplankton, which are too small to be ingested by copepods. Most primary production is channelled through the ‘microbial loop’ (picoplankton — heterotrophic nanoflagellates — ciliates). Sporadically, pelagic tunicates also consume a substantial proportion of primary production. Herbivorous crustaceans feed on heterotrophic nanoflagellates and ciliates, thus occupying a food chain position between 3 and 4, which leads to a food chain position between 4 and 5 for zooplanktivorous fish. By cultural eutrophication, N and P availability are elevated while Si remains unaffected or even declines. Diatoms decrease in relative importance while summer blooms of inedible algae (Phaeocystis, toxic dinoflagellates, toxic prymnesiophyceae, etc.) prevail. The spring bloom may still contain a substantial contribution of diatoms. The production of the inedible algae enters the pelagic energy flow via the detritus food chain: DOC release by cell lysis — bacteria — heterotrophic nanoflagellates — ciliates. Accordingly, crustacean zooplankton occupy food chain position 4 to 5 during the non-diatom seasons. Ecological efficiency considerations lead to the conclusion that fish production:primary production ratios should be highest in upwelling systems and substantially lower in oligotrophic and in culturally eutrophicated systems. Further losses of fish production may occur when carnivorous, gelatinous zooplankton (jellyfish) replace fish

    An indoor mesocosm system to study the effect of climate change on the late winter and spring succession of Baltic Sea phyto- and zooplankton

    Get PDF
    An indoor mesocosm system was set up to study the response of phytoplankton and zooplankton spring succession to winter and spring warming of sea surface temperatures. The experimental temperature regimes consisted of the decadal average of the Kiel Bight, Baltic Sea, and three elevated regimes with 2°C, 4°C, and 6°C temperature difference from that at baseline. While the peak of the phytoplankton spring bloom was accelerated only weakly by increasing temperatures (1.4 days per degree Celsius), the subsequent biomass minimum of phytoplankton was accelerated more strongly (4.25 days per degree Celsius). Phytoplankton size structure showed a pronounced response to warming, with large phytoplankton being more dominant in the cooler mesocosms. The first seasonal ciliate peak was accelerated by 2.1 days per degree Celsius and the second one by 2.0 days per degree Celsius. The over-wintering copepod populations declined faster in the warmer mesocosm, and the appearance of nauplii was strongly accelerated by temperature (9.2 days per degree Celsius). The strong difference between the acceleration of the phytoplankton peak and the acceleration of the nauplii could be one of the “Achilles heels” of pelagic systems subject to climate change, because nauplii are the most starvation-sensitive life cycle stage of copepods and the most important food item of first-feeding fish larvae

    Copepods act as switch between alternative trophic cascades in marine pelagic food webs

    Full text link
    A recent meta-analysis indicates that trophic cascades (indirect effects of predators on plants via herbivores) are weak in marine plankton in striking contrast to freshwater plankton (Shurin et al. 2002, Ecol. Lett., 5, 785–791). Here we show that in a marine plankton community consisting of jellyfish, calanoid copepods and algae, jellyfish predation consistently reduced copepods but produced two distinct, opposite responses of algal biomass. Calanoid copepods act as a switch between alternative trophic cascades along food chains of different length and with counteracting effects on algal biomass. Copepods reduced large algae but simultaneously promoted small algae by feeding on ciliates. The net effect of jellyfish on total algal biomass was positive when large algae were initially abundant in the phytoplankton, negative when small algae were dominant, but zero when experiments were analysed in combination. In contrast to marine systems, major pathways of energy flow in Daphnia-dominated freshwater systems are of similar chain length. Thus, differences in the length of alternative, parallel food chains may explain the apparent discrepancy in trophic cascade strength between freshwater and marine planktonic systems

    Copepod and microzooplankton grazing in mesocosms fertilised with different Si:N ratios: no overlap between food spectra and Si:N influence on zooplankton trophic level

    Full text link
    We hypothesized that the trophic level of marine copepods should depend on the composition of the protist community. To test this hypothesis, we manipulated the phytoplankton composition in mesocosms and measured grazing rates of copepods and mesozooplankton in those mesocosms. Twelve mesocosms with Northeast Atlantic phytoplankton were fertilised with different Si:N ratios from 0:1 to 1:1. After 1 week, ten of the mesocosms were filled with natural densities of mesozooplankton, mainly calanoid copepods, while two remained as mesozooplankton-free controls. Both before and after the addition of copepods there was a positive correlation of diatom dominance with Si:N ratios. During the second phase of the experiment, copepod and microzooplankton grazing rates on different phytoplankton species were assessed by a modification of the Landry-Hassett dilution technique, where the bottles containing the different dilution treatments were replaced by dialysis bags incubated in situ. The results indicated no overlap in the food spectrum of microzooplankton (mainly ciliates) and copepods. Ciliates fed on nanoplankton, while copepods fed on large or chain-forming diatoms, naked dinoflagellates, and ciliates. The calculated trophic level of copepods showed a significantly negative but weak correlation with Si:N ratios. The strength of this response was strongly dependent on the trophic levels assumed for ciliates and mixotrophic dinoflagellates

    A light-induced shortcut in the planktonic microbial loop

    Full text link
    Mixotrophs combine photosynthesis with phagotrophy to cover their demands in energy and essential nutrients. This gives them a competitive advantage under oligotropihc conditions, where nutrients and bacteria concentrations are low. As the advantage for the mixotroph depends on light, the competition between mixo- and heterotrophic bacterivores should be regulated by light. To test this hypothesis, we incubated natural plankton from the ultra-oligotrophic Eastern Mediterranean in a set of mesocosms maintained at 4 light levels spanning a 10-fold light gradient. Picoplankton (heterotrophic bacteria (HB), pico-sized cyanobacteria, and small-sized flagellates) showed the fastest and most marked response to light, with pronounced predator-prey cycles, in the high-light treatments. Albeit cell specific activity of heterotrophic bacteria was constant across the light gradient, bacterial abundances exhibited an inverse relationship with light. This pattern was explained by light-induced top-down control of HB by bacterivorous phototrophic eukaryotes (PE), which was evidenced by a significant inverse relationship between HB net growth rate and PE abundances. Our results show that light mediates the impact of mixotrophic bacterivores. As mixo- and heterotrophs differ in the way they remineralize nutrients, these results have far-reaching implications for how nutrient cycling is affected by light
    corecore