114 research outputs found

    Study of the 93-Nb + 7-Li Reactions with Application to Double Charge Exchange and Possible Production of New Neutron-Rich Nuclei

    Get PDF
    Supported by the National Science Foundation and Indiana Universit

    Characterizing a source of fission fragments for a gas jet

    Full text link
    A model for the rate at which various primary fission products stop in the gas of the source chamber of a gas jet has been constructed. It describes the absorption of fission fragments in Al foils placed between the 235 U deposit and the gas chamber as well as the penetration of fragments through the gas. The model is based on reported ranges (mean values as a function of A and the dispersion in ranges) and measured activities of Kr and Xe.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43112/1/10967_2005_Article_BF02060552.pd

    Spt2p Defines a New Transcription-Dependent Gross Chromosomal Rearrangement Pathway

    Get PDF
    Large numbers of gross chromosomal rearrangements (GCRs) are frequently observed in many cancers. High mobility group 1 (HMG1) protein is a non-histone DNA-binding protein and is highly expressed in different types of tumors. The high expression of HMG1 could alter DNA structure resulting in GCRs. Spt2p is a non-histone DNA binding protein in Saccharomyces cerevisiae and shares homology with mammalian HMG1 protein. We found that Spt2p overexpression enhances GCRs dependent on proteins for transcription elongation and polyadenylation. Excess Spt2p increases the number of cells in S phase and the amount of single-stranded DNA (ssDNA) that might be susceptible to cause DNA damage and GCR. Consistently, RNase H expression, which reduces levels of ssDNA, decreased GCRs in cells expressing high level of Spt2p. Lastly, high transcription in the chromosome V, the location at which GCR is monitored, also enhanced GCR formation. We propose a new pathway for GCR where DNA intermediates formed during transcription can lead to genomic instability

    Behavior of Iodine and Xenon in the Homogeneous Reactor Test

    Full text link
    corecore