240 research outputs found

    Acidithiobacillus

    Get PDF
    A.ci.di.thi.o.ba.cil'lus. L. masc. adj. acidus sour, tart; Gr. neut. n. theîon sulfur, brimstone (transliterated to L. neut. n. thium); L. masc. n. bacillus a short rod, a short wand; N.L. masc. n. Acidithiobacillus acid‐loving sulfur rodlet. Proteobacteria / Acidithiobacillia / Acidithiobacillales / Acidithiobacillaceae / Acidithiobacillus Cells are short, motile rods with a single polar flagellum. Some strains have an obvious glycocalyx. Gram‐stain‐negative. Endospores, exospores, and cysts are not produced. Obligate chemolithoautotrophs, with electron donors including reduced inorganic sulfur species such as thiosulfate, tetrathionate, and elementary sulfur (viz. α‐S8 and μ‐S∞). Some species can also use molecular hydrogen, ferrous iron, or metal sulfides such as pyrite (FeS2) as electron donors. Some species are diazotrophic. Heterotrophy, methylotrophy, and the so‐called C1 autotrophy are not observed. Carbon assimilated from CO2 via the transaldolase variant of the Calvin–Benson–Bassham cycle. Carboxysomes are used for CO2 concentration. Obligately respiratory, with molecular oxygen, ferric iron, or elementary sulfur as terminal electron acceptors, varying by species. Most strains grow in the range of 20–37°C, though some have a narrower range, and one species is thermophilic. Optimal growth from pH 2.0 to 5.8 and an overall range of pH −0.6 to 6.0. The major respiratory quinone is ubiquinone‐8 (UQ‐8), and traces of ubiquinone‐9 (UQ‐9), ubiquinone‐7 (UQ‐7), and menaquinones (MK) are found in some species. The dominant fatty acids are palmitic acid (C16:0), vaccenic acid (C18:1), cis‐11‐cyclopropyl‐nonadecanoic acid (C19:0 cyclo ω8c), palmitoleic acid (C16:1), myristic acid (C14:0), and lauric acid (C12:0). The dominant polar lipids are cardiolipin, aminolipids, phospholipid, phosphatidylglycerol, and phosphatidylethanolamine. The G + C fraction of genomic DNA is around 52.0–63.9 mol%. Form IAc (carboxysomal) and Form II (cytoplasmic) d‐ribulose 1,5‐bisphosphate carboxylase/oxygenase are used, as are forms bo 3 and bd‐I ubiquinol oxidases and, in the iron‐oxidizing species, the aa 3‐type cytochrome c oxidase. A description of Acidithiobacillus concretivorus comb. nov. is also given. DNA G + C content (mol%): 52.0–63.9. Type species: Acidithiobacillus thiooxidans Kelly and Wood 2000VP (Thiobacillus thiooxidans Waksman and Joffe 1922AL)

    Thermodynamic controls on element partitioning between titanomagnetite and andesitic–dacitic silicate melts

    Get PDF
    Titanomagnetite–melt partitioning of Mg, Mn, Al, Ti, Sc, V, Co, Ni, Cu, Zn, Ga, Zr, Nb, Mo, Hf and Ta was investigated experimentally as a function of oxygen fugacity (fO2) and temperature (T) in an andesitic–dacitic bulk-chemical compositional range. In these bulk systems, at constant T, there are strong increases in the titanomagnetite–melt partitioning of the divalent cations (Mg2+, Mn2+, Co2+, Ni2+, Zn2+) and Cu2+/Cu+ with increasing fO2 between 0.2 and 3.7 log units above the fayalite–magnetite–quartz buffer. This is attributed to a coupling between magnetite crystallisation and melt composition. Although melt structure has been invoked to explain the patterns of mineral–melt partitioning of divalent cations, a more rigorous justification of magnetite–melt partitioning can be derived from thermodynamic principles, which accounts for much of the supposed influence ascribed to melt structure. The presence of magnetite-rich spinel in equilibrium with melt over a range of fO2 implies a reciprocal relationship between a(Fe2+O) and a(Fe3+O1.5) in the melt. We show that this relationship accounts for the observed dependence of titanomagnetite–melt partitioning of divalent cations with fO2 in magnetite-rich spinel. As a result of this, titanomagnetite–melt partitioning of divalent cations is indirectly sensitive to changes in fO2 in silicic, but less so in mafic bulk systems.Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The attached file is the published pdf

    CT colonography with minimal bowel preparation: evaluation of tagging quality, patient acceptance and diagnostic accuracy in two iodine-based preparation schemes

    Get PDF
    PURPOSE: The aim of this study was to compare a 1-day with a 2-day iodine bowel preparation for CT colonography in a positive faecal occult blood test (FOBT) screening population. MATERIALS AND METHODS: One hundred consecutive patients underwent CT colonography and colonoscopy with segmental unblinding. The first 50 patients (group 1) ingested 7 50 ml iodinated contrast starting 2 days before CT colonography. The latter 50 patients (group 2) ingested 4 50 ml iodinated contrast starting 1 day before CT colonography. Per colonic segment measurements of residual stool attenuation and homogeneity were performed, and a subjective evaluation of tagging quality (grade 1-5) was done. Independently, two reviewers performed polyp and carcinoma detection. RESULTS: The tagging density was 638 and 618 HU (p = 0.458) and homogeneity 91 and 86 HU for groups 1 and 2, respectively (p = 0.145). The tagging quality was graded 5 (excellent) in 90% of all segments in group 1 and 91% in group 2 (p = 0.749). Mean per-polyp sensitivity for lesions >or=10 mm was 86% in group 1 and 97% in group 2 (p = 0.355). Patient burden from diarrhoea significantly decreased for patients in group 2. CONCLUSIONS: One-day preparation with meglumine ioxithalamate results in an improved patient acceptability compared with 2-day preparation and has a comparable, excellent image quality and good diagnostic performanc

    Laser-induced transient magnons in Sr3Ir2O7 throughout the Brillouin zone.

    Get PDF
    Although ultrafast manipulation of magnetism holds great promise for new physical phenomena and applications, targeting specific states is held back by our limited understanding of how magnetic correlations evolve on ultrafast timescales. Using ultrafast resonant inelastic X-ray scattering we demonstrate that femtosecond laser pulses can excite transient magnons at large wavevectors in gapped antiferromagnets and that they persist for several picoseconds, which is opposite to what is observed in nearly gapless magnets. Our work suggests that materials with isotropic magnetic interactions are preferred to achieve rapid manipulation of magnetism

    Search for the Decays B^0 -> D^{(*)+} D^{(*)-}

    Full text link
    Using the CLEO-II data set we have searched for the Cabibbo-suppressed decays B^0 -> D^{(*)+} D^{(*)-}. For the decay B^0 -> D^{*+} D^{*-}, we observe one candidate signal event, with an expected background of 0.022 +/- 0.011 events. This yield corresponds to a branching fraction of Br(B^0 -> D^{*+} D^{*-}) = (5.3^{+7.1}_{-3.7}(stat) +/- 1.0(syst)) x 10^{-4} and an upper limit of Br(B^0 -> D^{*+} D^{*-}) D^{*\pm} D^\mp and B^0 -> D^+ D^-, no significant excess of signal above the expected background level is seen, and we calculate the 90% CL upper limits on the branching fractions to be Br(B^0 -> D^{*\pm} D^\mp) D^+ D^-) < 1.2 x 10^{-3}.Comment: 12 page postscript file also available through http://w4.lns.cornell.edu/public/CLNS, submitted to Physical Review Letter

    ΛΛˉ\Lambda\bar{\Lambda} Production in Two-Photon Interactions at CLEO

    Full text link
    Using the CLEO detector at the Cornell e+e−e^+e^- storage ring, CESR, we study the two-photon production of ΛΛˉ\Lambda \bar{\Lambda}, making the first observation of γγ→ΛΛˉ\gamma \gamma \to \Lambda \bar{\Lambda}. We present the cross-section for γγ→ΛΛˉ \gamma \gamma \to \Lambda \bar{\Lambda} as a function of the γγ\gamma \gamma center of mass energy and compare it to that predicted by the quark-diquark model.Comment: 10 pages, postscript file also available through http://w4.lns.cornell.edu/public/CLN

    Observation of the Decay Ds+→ωπ+D_{s}^{+}\to \omega\pi^{+}

    Full text link
    Using e+e- annihilation data collected by the CLEO~II detector at CESR, we have observed the decay Ds+ to omega pi+. This final state may be produced through the annihilation decay of the Ds+, or through final state interactions. We find a branching ratio of [Gamma(Ds+ to omega pi+)/Gamma(Ds+ to eta pi+)]=0.16+-0.04+-0.03, where the first error is statistical and the second is systematic.Comment: 9 pages, postscript file also available through http://w4.lns.cornell.edu/public/CLN

    Cell Size and the Initiation of DNA Replication in Bacteria

    Get PDF
    In eukaryotes, DNA replication is coupled to the cell cycle through the actions of cyclin-dependent kinases and associated factors. In bacteria, the prevailing view, based primarily from work in Escherichia coli, is that growth-dependent accumulation of the highly conserved initiator, DnaA, triggers initiation. However, the timing of initiation is unchanged in Bacillus subtilis mutants that are ∟30% smaller than wild-type cells, indicating that achievement of a particular cell size is not obligatory for initiation. Prompted by this finding, we re-examined the link between cell size and initiation in both E. coli and B. subtilis. Although changes in DNA replication have been shown to alter both E. coli and B. subtilis cell size, the converse (the effect of cell size on DNA replication) has not been explored. Here, we report that the mechanisms responsible for coordinating DNA replication with cell size vary between these two model organisms. In contrast to B. subtilis, small E. coli mutants delayed replication initiation until they achieved the size at which wild-type cells initiate. Modest increases in DnaA alleviated the delay, supporting the view that growth-dependent accumulation of DnaA is the trigger for replication initiation in E. coli. Significantly, although small E. coli and B. subtilis cells both maintained wild-type concentration of DnaA, only the E. coli mutants failed to initiate on time. Thus, rather than the concentration, the total amount of DnaA appears to be more important for initiation timing in E. coli. The difference in behavior of the two bacteria appears to lie in the mechanisms that control the activity of DnaA
    • …
    corecore