7 research outputs found

    Minireview: Peripheral Nesfatin-1 in Regulation of the Gut Activity—15 Years since the Discovery

    No full text
    Nesfatin-1, discovered in 2006, is an anorexigenic molecule derived from the precursor protein NEFA/nucleobindin2. It is generally postulated that this molecule acts through a specific G protein-coupled receptor, as yet unidentified. Research conducted over the last 15 years has revealed both central and peripheral actions of nesfatin-1. Given its major central role, studies determining its inhibitory effect on food intake seem to be of major scientific interest. However, in recent years a number of experiments have found that peripheral organs, including those of the gastrointestinal tract (GIT), may also be a source (possibly even the predominant source) of nesfatin-1. This mini-review aimed to summarize the current state of knowledge regarding the expression and immunoreactivity of nesfatin-1 and its possible involvement (both physiological and pathological) in the mammalian GIT. Research thus far has shown very promising abilities of nesfatin-1 to restore the balance between pro-oxidants and antioxidants, to interplay with the gut microbiota, and to alter the structure of the intestinal barrier. This necessitates more extensive research on the peripheral actions of this molecule. More in-depth knowledge of such mechanisms (especially those leading to anti-inflammatory and anti-apoptotic effects) is important for a better understanding of the involvement of nefatin-1 in GIT pathophysiological conditions and/or for future therapeutic approaches

    Evolution of the climatic tolerance and postglacial range changes of the most primitive orchids (Apostasioideae) within Sundaland, Wallacea and Sahul

    No full text
    The location of possible glacial refugia of six Apostasioideae representatives is estimated based on ecological niche modeling analysis. The distribution of their suitable niches during the last glacial maximum (LGM) is compared with their current potential and documented geographical ranges. The climatic factors limiting the studied species occurrences are evaluated and the niche overlap between the studied orchids is assessed and discussed. The predicted niche occupancy profiles and reconstruction of ancestral climatic tolerances suggest high level of phylogenetic niche conservatism within Apostasioideae

    Basal Intestinal Morphology, Immunolocalization of Leptin and Ghrelin and Their Receptors in Newborn Wistar Rats after Prenatal Exposure to Fumonisins

    No full text
    Animal feed is very frequently contaminated with different types of mold, the metabolites of which are toxic to living organisms. Mold-contaminated cereal is rich in heat-resistant and harmful metabolites such as fumonisins (FBs). The amount of FBs consumed as part of animal feed, including livestock feed, is unknown. Therefore, this study aimed to evaluate the effects of maternal oral FB intoxication on basal duodenum morphology and the immunolocalization of gut hormones responsible for food intake (leptin and ghrelin), as well as their receptors, in newborn rat offspring. Pregnant Wistar rats were randomly allocated to one of three groups: a control group or one of two FB-intoxicated groups (60 or 90 mg FB/kg b.w., respectively). Basal morphological duodenal parameters changed in a dose- and sex-dependent manner. The intensity of the ghrelin immunoreaction was unchanged in females, while in males it increased after FB exposure (60 mg/kg b.w.), with a simultaneous decrease in expression of the ghrelin receptor. Leptin and its receptor immunoreaction intensity was decreased in both sexes following FB exposure. The current study highlighted the potential involvement of intestinal ghrelin and leptin in the metabolic disturbances observed later in life in offspring that were prenatally exposed to fumonisins

    Morphology and Chemical Coding of Rat Duodenal Enteric Neurons following Prenatal Exposure to Fumonisins

    No full text
    Fumonisins (FBs), including fumonisin B1 and B2 produced by the fungus Fusarium verticillioides, are widespread mycotoxins contaminating crop plants as well as processed food. The aim of the experiment was to determine whether the exposure of 5-week-old pregnant rats to FBs at 60 mg/kg b.w. (group FB60) or 90 mg/kg b.w. (group FB90) results in morphological changes in the duodenum of weaned offspring, particularly the enteric nervous system (ENS). In addition, the levels of expression of galanin and vasoactive intestinal polypeptide (VIP) in the ENS were analysed by immunofluorescence in the control and experimental groups of animals. No significant morphological changes in the thickness of the muscle layer or submucosa of the duodenum were noted in group FB60 or FB90. In group FB90 (but not FB60), there was a significant increase in the width of the villi and in the density of the intestinal crypts. Immunofluorescence analysis using neuronal marker Hu C/D showed no significant changes in group FB60 or FB90 in the morphology of the duodenal ENS, i.e., the myenteric plexus (MP) and submucosal plexus (SP), in terms of the density of enteric ganglia in the MP and SP, surface area of MP and SP ganglia, length and width of MP and SP ganglia, surface area of myenteric and submucosal neurons, diameter of myenteric and submucosal neurons, density of myenteric and submucosal neurons, and number of myenteric and submucosal neurons per ganglion. In both groups, there was an increase (relative to the control) in the percentage of Hu C/D-IR/VIP-IR (IR-immunoreactive) and Hu C/D-IR/galanin-IR myenteric and submucosal neurons in the ganglia of both the MP and SP of the duodenum. In addition, in groups FB60 and FB90, there was an increase in the number of nerve fibres showing expression of VIP and galanin in the mucosa, submucosa and circular muscle layer of the duodenum. The results indicate that prenatal exposure to FBs does not significantly alter the histological structure of the duodenum (including the ENS) in the weaned offspring. The changes observed in the chemical code of the myenteric and submucosal neurons in both experimental groups suggest harmful activity of FBs, which may translate into activation of repair mechanisms via overexpression of neuroprotective neuropeptides (VIP and galanin)

    Fourier Transform Infrared Microspectroscopy Combined with Principal Component Analysis and Artificial Neural Networks for the Study of the Effect of β-Hydroxy-β-Methylbutyrate (HMB) Supplementation on Articular Cartilage

    No full text
    The potential of Fourier Transform infrared microspectroscopy (FTIR microspectroscopy) and multivariate analyses were applied for the classification of the frequency ranges responsible for the distribution changes of the main components of articular cartilage (AC) that occur during dietary β-hydroxy-β-methyl butyrate (HMB) supplementation. The FTIR imaging analysis of histological AC sections originating from 35-day old male piglets showed the change in the collagen and proteoglycan contents of the HMB-supplemented group compared to the control. The relative amount of collagen content in the superficial zone increased by more than 23% and in the middle zone by about 17%, while no changes in the deep zone were observed compared to the control group. Considering proteoglycans content, a significant increase was registered in the middle and deep zones, respectively; 62% and 52% compared to the control. AFM nanoindentation measurements collected from animals administered with HMB displayed an increase in AC tissue stiffness by detecting a higher value of Young’s modulus in all investigated AC zones. We demonstrated that principal component analysis and artificial neural networks could be trained with spectral information to distinguish AC histological sections and the group under study accurately. This work may support the use and effectiveness of FTIR imaging combined with multivariate analyses as a quantitative alternative to traditional collagenous tissue-related histology

    Assessing Bone Health Status and Eggshell Quality of Laying Hens at the End of a Production Cycle in Response to Inclusion of a Hybrid Rye to a Wheat–Corn Diet

    No full text
    The objective of this study was to evaluate whether there are negative effects of the partial replacement of white corn with rye along with xylanase supplementation on overall bone quality, eggshell mineralization, and mechanical strength in laying hens. From the 26th week of life, ISA Brown laying hens were fed either a wheat–corn diet or a diet containing 25% rye, with or without xylanase. The experimental period lasted for 25 weeks, until birds reached their 50th week of age, after which bone and eggshell quality indices were assessed. Eggshell thickness and eggshell Ca content of eggs from rye-fed hens were improved by xylanase supplementation. No differences in the mechanical properties of the eggshells were observed between treatments, except for the diet-dependent changes in egg deformation. Rye inclusion had no effect on the mechanical properties of bone. Xylanase supplementation, irrespective of the diet, had a positive effect on bone strength and increased tibia Ca content, as well as the content of several microelements. Hence, hybrid rye combined with wheat can replace 25% of corn in layer diets without compromising shell quality or bone mineral content. Xylanase supplementation in these diets is recommended since its inclusion improves both bone strength and quality
    corecore