22 research outputs found

    Pharmacological Potential and Synthetic Approaches of Imidazo[4,5-b]pyridine and Imidazo[4,5-c]pyridine Derivatives

    No full text
    The structural resemblance between the fused imidazopyridine heterocyclic ring system and purines has prompted biological investigations to assess their potential therapeutic significance. They are known to play a crucial role in numerous disease conditions. The discovery of their first bioactivity as GABAA receptor positive allosteric modulators divulged their medicinal potential. Proton pump inhibitors, aromatase inhibitors, and NSAIDs were also found in this chemical group. Imidazopyridines have the ability to influence many cellular pathways necessary for the proper functioning of cancerous cells, pathogens, components of the immune system, enzymes involved in carbohydrate metabolism, etc. The collective results of biochemical and biophysical properties foregrounded their medicinal significance in central nervous system, digestive system, cancer, inflammation, etc. In recent years, new preparative methods for the synthesis of imidazopyridines using various catalysts have been described. The present manuscript to the best of our knowledge is the complete compilation on the synthesis and medicinal aspects of imidazo[4,5-b]pyridines and imidazo[4,5-c]pyridines reported from the year 2000 to date, including structure–activity relationships

    In Silico ADME and Toxicity Prediction of Benzimidazole Derivatives and Its Cobalt Coordination Compounds. Synthesis, Characterization and Crystal Structure

    No full text
    As a result of the synthesis, three new solids, cobalt (II) coordination compounds with benzimidazole derivatives, and chlorides were obtained. The ligands that were used in the synthesis were specially synthesized and were commercially unavailable. During the synthesis, a single crystal of the complex with the L1 ligand was obtained and the crystal structure was refined. All coordination compounds were characterized by elemental analysis, infrared spectroscopy, and thermogravimetric analysis. All the obtained data allowed one to determine the formulas of the new compounds, as well as to determine the method of metal–ligand coordination. Thermal analysis allowed to know the temperature stability of the compounds, solids intermediate and final products of pyrolysis. Additionally, volatile decomposition and fragmentation products have been identified. The toxicity of the compounds and their bioavailability were determined using in silico methods. By predicting activity on cell lines, the potential use of compounds as chemotherapeutic agents has been specified. The blood-brain barrier crossing and the gastrointestinal absorption were defined. Pharmaceutical biodistribution was also simulated

    Structure and Microbiological Activity of 1<em>H</em>-benzo[<em>d</em>]imidazole Derivatives

    No full text
    Three new crystal structures of 1H-benzo[d]imidazole derivatives were determined. In the structures of these compounds, an identical system of hydrogen bonds, C(4), was observed. Solid-state NMR was applied for testing the quality of the obtained samples. All of these compounds were tested for in vitro antibacterial activity against Gram-positive bacteria and Gram-negative bacteria, as well as antifungal activity, by checking their selectivity. ADME calculations indicate that the compounds can be tested as potential drugs

    Synthesis and Tuberculostatic Activity Evaluation of Novel Benzazoles with Alkyl, Cycloalkyl or Pyridine Moiety

    No full text
    Compounds possessing benzimidazole system exhibit significant antituberculous activity. In order to examine how structure modifications affect tuberculostatic activity, a series of benzazole derivatives were synthesized and screened for their antitubercular activity. The compounds 1&ndash;20 were obtained by the reaction between o-diamine, o-aminophenol, or o-aminothiophenol with carboxylic acids or thioamides. The newly synthesized compounds were characterized by IR, 1H-NMR, 13C-NMR spectra, and elemental analysis. Synthesized benzazoles were evaluated for their tuberculostatic activity toward Mycobacterium tuberculosis strains. Quantum chemical calculations were performed to study the molecular geometry and the electronic structure of benzimidazoles GK-151B, 4, 6, and benzoxazole 11, using the Gaussian 03W software (Gaussian, Inc., Wallingford, CT, USA). Three-dimensional structure of benzimidazoles 1&ndash;3, MC-9, and GK-151B was determined by ab initio calculation using Gamess-US software. The activity of the received benzimidazoles was moderate or good. All of the benzoxazoles and benzothiazoles demonstrated much lower activity. Benzoxazoles were less active by about 50 times, and benzothiazole by 100 times than the benzimidazole analogs. Quantum chemical calculations showed differences in the distribution of electrostatic potential in the benzazole system of benzimidazoles and benzoxazoles. Three-dimensional structure calculations revealed how the parity of the alkyl substituent at the C2 position impacts the activity. Benzimidazole system is essential for the antituberculosis activity that is associated with the presence of the imine nitrogen atom in N-1 position. Its replacement by an oxygen or sulfur atom results in a decrease of the activity. The parity of the alkyl substituent at the C-2 position also modifies the activity

    Synthesis and Biological Activity of Piperidinothiosemicarbazones Derived from Aminoazinecarbonitriles

    No full text
    To investigate how structural modifications affect tuberculostatic potency, we synthesized seven new piperidinothiosemicrabazone derivatives 8–14, in which three of them had a pyrazine ring replacing the pyridine ring. Derivatives 8–9 and 13–14 exhibited significant activity against the standard strain (minimum inhibitory concentration (MIC) 2–4 μg/mL) and even greater activity against the resistant M. tuberculosis strain (MIC 0.5–4 μg/mL). Additionally, the effects of compounds 8–9 were entirely selective (MIC toward other microorganisms ≥ 1000 μg/mL) and non-toxic (IC50 to HaCaT cells 5.8 to >50 μg/mL). The antimycobacterial activity of pyrazine derivatives 11–12 was negligible (MIC 256 to >500 μg/mL), indicating that replacing the aromatic ring was generally not a promising line of research in this case. The zwitterionic structure of compound 11 was determined using X-ray crystallography. Absorption, distribution, metabolism, and excretion (ADME) calculations showed that all compounds, except 11, could be considered for testing as future drugs. An analysis of the structure–activity relationship was carried out, indicating that the higher basicity of the substituent located at the heteroaromatic ring might be of particular importance for the antituberculous activity of the tested groups of compounds

    Relationship between the Crystal Structure and Tuberculostatic Activity of Some 2-Amidinothiosemicarbazone Derivatives of Pyridine

    No full text
    Tuberculosis remains one of the most common diseases affecting developing countries due to difficult living conditions, the rapidly increasing resistance of M. tuberculosis strains and the small number of effective anti-tuberculosis drugs. This study concerns the relationship between molecular structure observed in a solid-state by X-ray diffraction and the 15N NMR of a group of pyridine derivatives, from which promising activity against M. tuberculosis was reported earlier. It was found that the compounds exist in two tautomeric forms: neutral and zwitterionic. The latter form forced the molecules to adopt a stable, unique, flat frame due to conjugation and the intramolecular hydrogen bond system. As the compounds exist in a zwitterionic form in the crystal state generally showing higher activity against tuberculosis, it may indicate that this geometry of molecules is the &ldquo;active&rdquo; form

    Design, Synthesis, and Characterization of Novel Coordination Compounds of Benzimidazole Derivatives with Cadmium

    No full text
    Four complexes of Cd(II) with benzimidazole derivatives were synthesized and named C1, C2, C3, and C4. All coordination compounds were characterized through elemental analysis (EA), flame atomic absorption spectrometry (FAAS), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis coupled with mass spectrometry) (TG-MS), a cytotoxicity assay (MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide)), and computational chemical analysis for absorption, distribution, metabolism, and excretion (ADME). All of the obtained results are compatible and are consistent with the respective structures of the obtained compounds and their properties. The various techniques used allowed the determination of the composition, proposed structure of the compounds, their thermal stability and thermal properties, and the method of coordination between the metal (II) ion and the ligand. The ADME technique was also used to estimate the physicochemical and biological properties. The antitumor activity of the compounds was determined with an MTT assay on the glioblastoma (T98G), neuroblastoma (SK-N-AS), and lung adenocarcinoma (A549) cell lines, as well as normal human skin fibroblasts (CCD-1059Sk). Compound C2 was found to have potential antitumor properties and to be effective in inhibiting the growth of neuroblastoma cells. The antimicrobial activity of Cd complexes, free ligands, and reference drugs was tested against six strains of Gram-positive bacteria, five strains of Gram-negative rods, and three strains of yeasts. Compound C3 significantly increased activity against Gram-positive bacteria in comparison to the ligand

    Synthesis and Structure&ndash;Activity Relationship of 2,6-Disubstituted Thiosemicarbazone Derivatives of Pyridine as Potential Antituberculosis Agents

    No full text
    In this study, six new 2,6-disubstituted thiosemicarbazone derivatives of pyridine were synthesized (4&ndash;9), and their tuberculostatic activity was evaluated. All of them showed two- to eightfold higher activity (minimum inhibitory concentration (MIC) 0.5&ndash;4 &micro;g/mL) against the resistant strain compared with the reference drug. Compounds 5 and 7, which contained the most basic substituents&mdash;pyrrolidine and piperidine&mdash;in their structure, strongly inhibited the growth of the standard strain (MIC 2 &micro;g/mL). Furthermore, the same derivatives exhibited activity comparable to that of the reference drugs against some types of Gram-positive bacteria (MIC 0.49 &micro;g/mL) and showed no cytotoxicity (IC50 &gt; 50 &micro;g/mL) in HaCaT cells. The zwitterionic structure of each compound was determined using X-ray crystallography. Absorption, distribution, metabolism, and excretion analyses showed that all compounds are good drug candidates. Thus, compounds 5 and 7 were identified as leading structures for further research on antituberculosis drugs with extended effects
    corecore