8 research outputs found

    Reversible inactivation of ferret auditory cortex impairs spatial and non-spatial hearing

    Get PDF
    A key question in auditory neuroscience is to what extent are brain regions functionally specialized for processing specific sound features such as location and identity. In auditory cortex, correlations between neural activity and sounds support both the specialization of distinct cortical subfields, and encoding of multiple sound features within individual cortical areas. However, few studies have tested the contribution of auditory cortex to hearing in multiple contexts. Here we determined the role of ferret primary auditory cortex in both spatial and non-spatial hearing by reversibly inactivating the middle ectosylvian gyrus during behavior using cooling (n=2 females) or optogenetics (n=1 female). Optogenetic experiments utilized the mDLx promoter to express Channelrhodopsin2 in GABAergic interneurons and we confirmed both viral expression (n=2 females) and light-driven suppression of spiking activity in auditory cortex, recorded using Neuropixels under anesthesia (n=465 units from 2 additional untrained female ferrets). Cortical inactivation via cooling or optogenetics impaired vowel discrimination in co-located noise. Ferrets implanted with cooling loops were tested in additional conditions that revealed no deficits for identifying vowels in clean conditions, or when the temporally coincident vowel and noise were spatially separated by 180 degrees. These animals did however show impaired sound localization when inactivating the same auditory cortical region implicated in vowel discrimination in noise. Our results demonstrate that, as a brain region showing mixed selectivity for spatial and non-spatial features of sound, primary auditory cortex contributes to multiple forms of hearing.SIGNIFICANCE STATEMENT:Neurons in primary auditory cortex are often sensitive to the location and identity of sounds. Here we inactivated auditory cortex during spatial and non- spatial listening tasks using cooling, or optogenetics. Auditory cortical inactivation impaired multiple behaviors, demonstrating a role in both the analysis of sound location and identity and confirming a functional contribution of mixed selectivity observed in neural activity. Parallel optogenetic experiments in two additional untrained ferrets linked behavior to physiology by demonstrating that expression of Channelrhodopsin 2 permitted rapid light-driven suppression of auditory cortical activity recorded under anesthesia

    The role of temporal coherence and temporal predictability in the build-up of auditory grouping

    Get PDF
    The cochlea decomposes sounds into separate frequency channels, from which the auditory brain must reconstruct the auditory scene. To do this the auditory system must make decisions about which frequency information should be grouped together, and which should remain distinct. Two key cues for grouping are temporal coherence, resulting from coherent changes in power across frequency, and temporal predictability, resulting from regular or predictable changes over time. To test how these cues contribute to the construction of a sound scene we present listeners with a range of precursor sounds, which act to prime the auditory system by providing information about each sounds structure, followed by a fixed masker in which participants were required to detect the presence of an embedded tone. By manipulating temporal coherence and/or temporal predictability in the precursor we assess how prior sound exposure influences subsequent auditory grouping. In Experiment 1, we measure the contribution of temporal predictability by presenting temporally regular or jittered precursors, and temporal coherence by using either narrow or broadband sounds, demonstrating that both independently contribute to masking/unmasking. In Experiment 2, we measure the relative impact of temporal coherence and temporal predictability and ask whether the influence of each in the precursor signifies an enhancement or interference of unmasking. We observed that interfering precursors produced the largest changes to thresholds

    Seasonal weight changes in laboratory ferrets

    Get PDF
    Ferrets (Mustela putorius furo) are a valuable animal model used in biomedical research. Like many animals, ferrets undergo significant variation in body weight seasonally, affected by photoperiod, and these variations complicate the use weight as an indicator of health status. To overcome this requires a better understanding of these seasonal weight changes. We provide a normative weight data set for the female ferret accounting for seasonal changes, and also investigate the effect of fluid regulation on weight change. Female ferrets (n = 39) underwent behavioural testing from May 2017 to August 2019 and were weighed daily, while housed in an animal care facility with controlled light exposure. In the winter (October to March), animals experienced 10 hours of light and 14 hours of dark, while in summer (March to October), this contingency was reversed. Individual animals varied in their body weight from approximately 700 to 1200 g. However, weights fluctuated with light cycle, with animals losing weight in summer, and gaining weight in winter such that they fluctuated between approximately 80% and 120% of their long-term average. Ferrets were weighed as part of their health assessment while experiencing water regulation for behavioural training. Water regulation superimposed additional weight changes on these seasonal fluctuations, with weight loss during the 5-day water regulation period being greater in summer than winter. Analysing the data with a Generalised Linear Model confirmed that the percentage decrease in weight per week was relatively constant throughout the summer months, while the percentage increase in body weight per week in winter decreased through the season. Finally, we noted that the timing of oestrus was reliably triggered by the increase in day length in spring. These data establish a normative benchmark for seasonal weight variation in female ferrets that can be incorporated into the health assessment of an animal’s condition

    Loci associated with ischaemic stroke and its subtypes (SiGN): a genome-wide association study

    No full text
    BACKGROUND: The discovery of disease-associated loci through genome-wide association studies (GWAS) is the leading genetic approach to the identification of novel biological pathways underlying diseases in humans. Until recently, GWAS in ischaemic stroke have been limited by small sample sizes and have yielded few loci associated with ischaemic stroke. We did a large-scale GWAS to identify additional susceptibility genes for stroke and its subtypes. METHODS: To identify genetic loci associated with ischaemic stroke, we did a two-stage GWAS. In the first stage, we included 16 851 cases with state-of-the-art phenotyping data and 32 473 stroke-free controls. Cases were aged 16 to 104 years, recruited between 1989 and 2012, and subtypes of ischaemic stroke were recorded by centrally trained and certified investigators who used the web-based protocol, Causative Classification of Stroke (CCS). We constructed case-control strata by identifying samples that were genotyped on nearly identical arrays and were of similar genetic ancestral background. We cleaned and imputed data by use of dense imputation reference panels generated from whole-genome sequence data. We did genome-wide testing to identify stroke-associated loci within each stratum for each available phenotype, and we combined summary-level results using inverse variance-weighted fixed-effects meta-analysis. In the second stage, we did in-silico lookups of 1372 single nucleotide polymorphisms identified from the first stage GWAS in 20 941 cases and 364 736 unique stroke-free controls. The ischaemic stroke subtypes of these cases had previously been established with the Trial of Org 10 172 in Acute Stroke Treatment (TOAST) classification system, in accordance with local standards. Results from the two stages were then jointly analysed in a final meta-analysis. FINDINGS: We identified a novel locus (G allele at rs12122341) at 1p13.2 near TSPAN2 that was associated with large artery atherosclerosis-related stroke (first stage odds ratio [OR] 1·21, 95% CI 1·13-1·30, p=4·50 × 10-8; joint OR 1·19, 1·12-1·26, p=1·30 × 10-9). Our results also supported robust associations with ischaemic stroke for four other loci that have been reported in previous studies, including PITX2 (first stage OR 1·39, 1·29-1·49, p=3·26 × 10-19; joint OR 1·37, 1·30-1·45, p=2·79 × 10-32) and ZFHX3 (first stage OR 1·19, 1·11-1·27, p=2·93 × 10-7; joint OR 1·17, 1·11-1·23, p=2·29 × 10-10) for cardioembolic stroke, and HDAC9 (first stage OR 1·29, 1·18-1·42, p=3·50 × 10-8; joint OR 1·24, 1·15-1·33, p=4·52 × 10-9) for large artery atherosclerosis stroke. The 12q24 locus near ALDH2, which has previously been associated with all ischaemic stroke but not with any specific subtype, exceeded genome-wide significance in the meta-analysis of small artery stroke (first stage OR 1·20, 1·12-1·28, p=6·82 × 10-8; joint OR 1·17, 1·11-1·23, p=2·92 × 10-9). Other loci associated with stroke in previous studies, including NINJ2, were not confirmed. INTERPRETATION: Our results suggest that all ischaemic stroke-related loci previously implicated by GWAS are subtype specific. We identified a novel gene associated with large artery atherosclerosis stroke susceptibility. Follow-up studies will be necessary to establish whether the locus near TSPAN2 can be a target for a novel therapeutic approach to stroke prevention. In view of the subtype-specificity of the associations detected, the rich phenotyping data available in the Stroke Genetics Network (SiGN) are likely to be crucial for further genetic discoveries related to ischaemic stroke
    corecore