106 research outputs found

    Introduction: De-institutionalizing Religion in Southeast Asia

    Get PDF

    A possible case of maculopapular eruption associated with glecaprevir/pibrentasvir treatment for chronic hepatitis C virus infection

    Get PDF
    Tomiyasu et al. report a possible case of maculopapular eruption associated with G/P treatment. Based upon the clinical course and histological analysis, the present case may be mediated by allergic mechanism. Since G/P treatment is widely used because of its efficacy and safety, clinical dermatologists should be aware that G/P may cause cutaneous drug eruption mediated by allergic responses

    A case of Langerhans cell sarcoma on the scalp: Whole‐exome sequencing reveals a role of ultraviolet in the pathogenesis

    Get PDF
    Langerhans cell sarcoma (LCS) is a high‐grade neoplasm with overtly malignant cytological features and a Langerhans cell phenotype. The underlying genetic features are poorly understood, and only a few alterations, such as those of the MARK pathway‐related genes, CDKN2A and TP53 have been reported. Here we present a 70‐year‐old male with LCS on the scalp and pulmonary metastasis. The multinodular tumor, 3.0 cm in diameter, consisted of diffusely proliferated pleomorphic cells with numerous mitoses (53/10 HPFs). Immunohistochemically, the tumor cells were positive for CD1a, Langerin and PD‐L1, and the Ki‐67 labeling index was 50%. These pathological features were consistent with LCS, and were also observed in the metastatic tumor. Whole‐exome sequencing revealed that both the primary and metastatic tumors harbored a large number of mutations (>20 mutations/megabase), with deletion of CDKN2A and TP53 mutation, and highlighted that the mutational signature was predominantly characteristic of ultraviolet (UV) exposure (W = 0.828). Our results suggest, for the first time, that DNA damage by UV could accumulate in Langerhans cells and play a role in the pathogenesis of LCS. The high mutational burden and PD‐L1 expression in the tumor would provide a rationale for the use of immune checkpoint inhibitors for treatment of unresectable LCS

    Imaging findings of granulocyte colony-stimulating factor-producing tumors: a case series and review of the literature

    Get PDF
    Granulocyte colony-stimulating factor (G-CSF)-producing tumors have an aggressive clinical course. Here, we report five cases of G-CSF-producing tumors and review the literature, focusing on imaging findings related to tumor-produced G-CSF. In addition to our cases, we identified 30 previous reports of G-CSF-producing tumors on which 18F-fluorodeoxyglucose positron emission tomography (FDG-PET)/CT, bone scintigraphy, or evaluation of bone marrow MR findings was performed. White blood cell count, serum C-reactive protein, and serum interleukin-6 were elevated in all cases for which these parameters were measured. G-CSF-producing tumors presented large necrotic masses (mean diameter 83.2 mm, range 17–195 mm) with marked FDG uptake (mean maximum standardized uptake value: 20.09). Diffuse FDG uptake into the bone marrow was shown in 28 of the 31 cases in which FDG-PET/CT was performed. The signal intensity of bone marrow suggested marrow reconversion in all seven MRI-assessable cases. Bone scintigraphy demonstrated no significant uptake, except in two cases with bone metastases. Splenic FDG uptake was increased in 8 of 10 cases in which it was evaluated. These imaging findings may reflect the effects of tumor-produced G-CSF. The presence of G-CSF-producing tumors should be considered in patients with cancer who show these imaging findings and marked inflammatory features of unknown origin

    Molecular dynamics study of free energy profile for dissociation of ligand from CA I active site

    Get PDF
    We investigate the binding/dissociation process of ligand molecule from carbonicanhydrase (CA) I carbonic anhydrase (CA) I enzyme by using all-atom moleculardynamics simulation. The force field parameters of zinc ion in the CA I active site are estimatedby quantum chemical calculations and are summarized in this paper. The free energyprofile for binding/dissociation process of ligand from CA I active site is calculated by thethermodynamic integration combined with the all-atom molecular dynamics simulation. Thebinding free energy as a function of the distance between the center of mass positions of CAI active site and the ligand molecule is estimated. The radial distribution function of theCA I-ligand complex is calculated from the trajectory of all-atom molecular dynamics (MD)simulation. We estimate the free energy surface from the radial distribution function. Wecan obtain the bond constant of the equilibrium state from the value of the free energy surface.We discuss the binding/dissociation process of ligand molecule by calculating the freeenergy profile to know the stability of the CA I-ligand complex with some thermodynamicproperties such as the binding free energy, the equilibrium state of the free energy surfaceand so on

    Neonatal Fc receptor induces intravenous immunoglobulin growth suppression in Langerhans cell histiocytosis

    Get PDF
    The neonatal Fc receptor (FcRn) plays a role in trafficking IgG and albumin and is thought to mediate intravenous immunoglobulin (IVIG) therapy for certain diseases. IVIG can be used for the treatment of human Langerhans cell histiocytosis (LCH); however, the mechanism remains unclear. The expression and function of FcRn protein have not been studied in LCH, though the expression of FcRn messenger RNA (mRNA) have been reported. In this report, we confirmed the expression of FcRn in 26 of 30 pathological cases (86.7%) diagnosed immunohistochemically as LCH. The expression was independent of age, gender, location, multi- or single-system, and the status of BRAFV600E immunostaining. We also confirmed the expression of FcRn mRNA and protein in the human LCH-like cell line, ELD-1. FcRn suppressed albumin consumption and growth of IVIG preparation-treated ELD-1 cells, but not of IVIG preparation-untreated or FcRn-knockdown ELD-1 cells. In addition, FITC-conjugated albumin was taken into Rab11-positive recycle vesicles in mock ELD-1 cells but not in FcRn-knockdown ELD-1 cells. IVIG preparation prolonged this status in mock ELD-1 cells. Therefore, ELD-1 recycled albumin via FcRn and albumin was not used for metabolism. Our results increase our understanding of the molecular mechanism of IVIG treatment of LCH

    Phase Ib/II study of nivolumab combined with palliative radiation therapy for bone metastasis in patients with HER2-negative metastatic breast cancer

    Get PDF
    Radiation therapy (RT) can enhance the abscopal effect of immune checkpoint blockade. This phase I/II study investigated the efficacy and safety of nivolumab plus RT in HER2-negative metastatic breast cancer requiring palliative RT for bone metastases. Cohort A included luminal-like disease, and cohort B included both luminal-like and triple-negative disease refractory to standard systemic therapy. Patients received 8 Gy single fraction RT for bone metastasis on day 0. Nivolumab was administered on day 1 for each 14-day cycle. In cohort A, endocrine therapy was administered. The primary endpoint was the objective response rate (ORR) of the unirradiated lesions. Cohorts A and B consisted of 18 and 10 patients, respectively. The ORR was 11% (90% CI 4–29%) in cohort A and 0% in cohort B. Disease control rates were 39% (90% CI 23–58%) and 0%. Median progression-free survival was 4.1 months (95% CI 2.1–6.1 months) and 2.0 months (95% CI 1.2–3.7 months). One patient in cohort B experienced a grade 3 adverse event. Palliative RT combined with nivolumab was safe and showed modest anti-tumor activity in cohort A. Further investigations to enhance the anti-tumor effect of endocrine therapy combined with RT plus immune checkpoint blockade are warranted

    SLAM family member 8 is expressed in and enhances the growth of anaplastic large cell lymphoma

    Get PDF
    Signaling lymphocytic activation molecule family member 8 (SLAMF8)B-lymphocyte activator macrophage expressed/CD353 is a member of the CD2 family. SLAMF8 suppresses macrophage function but enhances the growth of neoplastic mast cells via SHP-2. In this study, we found that some anaplastic large cell lymphoma (ALCL) samples were immunohistochemically positive for SLAMF8. However, we found no significant differences between SLAMF8-positive and SLAMF8-negative ALCL samples with respect to age, gender, site, or prognosis. We also identified SLAMF8 expression in ALCL cell lines, Karpas299, and SU-DHL-1. SLAMF8 knockdown decreased the activation of SHP-2 and the growth of these cell lines, and increased the apoptosis of these cell lines. In addition, we observed the interaction between SLAMF8 and SHP-2 in these cell lines using the DuoLink in situ kit. Taken together, these results suggest that SLAMF8 may enhance the growth of ALCL via SHP-2 interaction

    RUNX inhibitor suppresses graft‐versus‐host disease through targeting RUNX‐NFATC2 axis

    Get PDF
    Patients with refractory graft-versus-host disease (GVHD) have a dismal prognosis. Therefore, novel therapeutic targets are still needed to be identified. Runt-related transcriptional factor (RUNX) family transcription factors are essential transcription factors that mediate the essential roles in effector T cells. However, whether RUNX targeting can suppress, and GVHD is yet unknown. Here, we showed that RUNX family members have a redundant role in directly transactivating NFATC2 expression in T cells. We also found that our novel RUNX inhibitor, Chb-M’, which is the inhibitor that switches off the entire RUNX family by alkylating agent–conjugated pyrrole-imidazole (PI) polyamides, inhibited T-cell receptor mediated T cell proliferation and allogenic T cell response. These were designed to specifically bind to consensus RUNX-binding sequences (TGTGGT). Chb-M’ also suppressed the expression of NFATC2 and pro-inflammatory cytokine genes in vitro. Using xenogeneic GVHD model, mice injected by Chb-M’ showed almost no sign of GVHD. Especially, the CD4 T cell was decreased and GVHD-associated cytokines including tissue necrosis factor-α and granulocyte-macrophage colony-stimulating factor were reduced in the peripheral blood of Chb-M’ injected mice. Taken together, our data demonstrates that RUNX family transcriptionally upregulates NFATC2 in T cells, and RUNX-NFATC2 axis can be a novel therapeutic target against GVHD
    corecore