341 research outputs found
Inhibition of RAGE signaling through the intracellular delivery of inhibitor peptides by PEI cationization
The receptor for advanced glycation end products (RAGE) is a multi-ligand cell surface receptor and a member of the immunoglobulin superfamily. RAGE is involved in a wide range of inflammatory, degenerative and hyper-proliferative disorders which span over different organs by engaging diverse ligands, including advanced glycation end products, S100 family proteins, high-mobility group protein B1 (HMGB1) and amyloid beta. We previously demonstrated that the cytoplasmic domain of RAGE is phosphorylated upon the binding of ligands, enabling the recruitment of two distinct pairs of adaptor proteins, Toll-interleukin 1 receptor domain-containing adaptor protein (TIRAP) and myeloid differentiation protein 88 (MyD88). This engagement allows the activation of downstream effector molecules, and thereby mediates a wide variety of cellular processes, such as inflammatory responses, apoptotic cell death, migration and cell growth. Therefore, inhibition of the binding of TIRAP to RAGE may abrogate intracellular signaling from ligand-activated RAGE. In the present study, we developed inhibitor peptides for RAGE signaling (RAGE-I) by mimicking the phosphorylatable cytosolic domain of RAGE. RAGE-I was efficiently delivered into the cells by polyethylenimine (PEI) cationization. We demonstrated that RAGE-I specifically bound to TIRAP and abrogated the activation of Cdc42 induced by ligand-activated RAGE. Furthermore, we were able to reduce neuronal cell death induced by an excess amount of S100B and to inhibit the migration and invasion of glioma cells in vitro. Our results indicate that RAGE-I provides a powerful tool for therapeutics to block RAGE-mediated multiple signaling
Statistical Analysis of Prognostic Factors for Survival in Patients with Spinal Metastasis
There are a variety of treatment options for patients with spinal metastasis, and predicting prognosis is essential for selecting the proper treatment. The purpose of the present study was to identify the significant prognostic factors for the survival of patients with spinal metastasis. We retrospectively reviewed 143 patients with spinal metastasis. The median age was 61 years. Eleven factors reported previously were analyzed using the Cox proportional hazards model:gender, age, performance status, neurological deficits, pain, type of primary tumor, metastasis to major organs, previous chemotherapy,
disease-free interval before spinal metastasis, multiple spinal metastases, and extra-spinal bone metastasis. The average survival of study patients after the first visit to our clinic was 22 months. Multivariate survival analysis demonstrated that type of primary tumor (hazard ratio [HR]=6.80, p<0.001), metastasis to major organs (HR=2.01, p=0.005), disease-free interval before spinal metastasis
(HR=1.77, p=0.028), and extra-spinal bone metastasis (HR=1.75, p=0.017) were significant prognostic factors. Type of primary tumor was the most powerful prognostic factor. Other prognostic
factors may differ among the types of primary tumor and may also be closely associated with primary
disease activity. Further analysis of factors predicting prognosis should be conducted with respect to each type of primary tumor to help accurately predict prognosis
Role of Hypoxic OPC in Angiogenesis
Background-Oligodendrocyte precursor cells (OPCs) regulate neuronal, glial, and vascular systems in diverse ways and display phenotypic heterogeneity beyond their established role as a reservoir for mature oligodendrocytes. However, the detailed phenotypic changes of OPCs after cerebral ischemia remain largely unknown. Here, we aimed to investigate the roles of reactive OPCs in the ischemic brain.
Methods and Results-The behavior of OPCs was evaluated in a mouse model of ischemic stroke produced by transient middle cerebral artery occlusion in vivo. For in vitro experiments, the phenotypic change of OPCs after oxygen glucose derivation was examined using a primary rat OPC culture. Furthermore, the therapeutic potential of hypoxic OPCs was evaluated in a mouse model of middle cerebral artery occlusion in vivo. Perivascular OPCs in the cerebral cortex were increased alongside poststroke angiogenesis in a mouse model of middle cerebral artery occlusion. In vitro RNA‐seq analysis revealed that primary cultured OPCs increased the gene expression of numerous pro‐angiogenic factors after oxygen glucose derivation. Hypoxic OPCs secreted a greater amount of pro‐angiogenic factors, such as vascular endothelial growth factor and angiopoietin‐1, compared with normoxic OPCs. Hypoxic OPC‐derived conditioned media increased the viability and tube formation of endothelial cells. In vivo studies also demonstrated that 5 consecutive daily treatments with hypoxic OPC‐conditioned media, beginning 2 days after middle cerebral artery occlusion, facilitated poststroke angiogenesis, alleviated infarct volume, and improved functional disabilities.
Conclusions-Following cerebral ischemia, the phenotype of OPCs in the cerebral cortex shifts from the parenchymal subtype to the perivascular subtype, which can promote angiogenesis. The optimal use of hypoxic OPCs secretome would provide a novel therapeutic option for stroke
Mechanistic Analysis of Resistance to REIC/Dkk-3-induced Apoptosis in Human Bladder Cancer Cells
We have recently shown that a new therapeutic modality using the REIC/Dkk-3 gene (Ad-REIC) is effective against various human cancers, including those of prostate, testis and breast origins. The aim of the present study was to examine the sensitivity of bladder cancers to Ad-REIC and to clarify the molecular mechanisms that determine sensitivity/resistance. We found that 2 human bladder cancer
cell lines, T24 and J82, are resistant to Ad-REIC. In T24 and J82 cells, the ER stress response and activation of JNK were observed in a manner similar to that in the sensitive PC3 cells. Translocation of Bax to mitochondria occurred in PC3 cells but not in T24 and J82 cells. Bcl-2 was remarkably overexpressed in T24 and J82 compared with the expression levels in sensitive cell lines. Treatment of T24 and J82 cells with a Bcl-2 inhibitor sensitized the cells to Ad-REIC-induced apoptosis. The results indicate that some human bladder cancers are resistant to apoptosis induced by overexpression of REIC/Dkk-3, which is at least in part due to up-regulation of Bcl-2. These results provide a basis for possible use of Bcl-2 as a marker of sensitive cancers and to try to sensitize resistant cancers to Ad-REIC by down-regulation of Bcl-2.</p
- …