65 research outputs found

    Trajectories in a space with a spherically symmetric dislocation

    Full text link
    We consider a new type of defect in the scope of linear elasticity theory, using geometrical methods. This defect is produced by a spherically symmetric dislocation, or ball dislocation. We derive the induced metric as well as the affine connections and curvature tensors. Since the induced metric is discontinuous, one can expect ambiguity coming from these quantities, due to products between delta functions or its derivatives, plaguing a description of ball dislocations based on the Geometric Theory of Defects. However, exactly as in the previous case of cylindric defect, one can obtain some well-defined physical predictions of the induced geometry. In particular, we explore some properties of test particle trajectories around the defect and show that these trajectories are curved but can not be circular orbits.Comment: 11 pages, 3 figure

    Absolute conservation law for black holes

    Get PDF
    In all 2d theories of gravity a conservation law connects the (space-time dependent) mass aspect function at all times and all radii with an integral of the matter fields. It depends on an arbitrary constant which may be interpreted as determining the initial value together with the initial values for the matter field. We discuss this for spherically reduced Einstein-gravity in a diagonal metric and in a Bondi-Sachs metric using the first order formulation of spherically reduced gravity, which allows easy and direct fixations of any type of gauge. The relation of our conserved quantity to the ADM and Bondi mass is investigated. Further possible applications (ideal fluid, black holes in higher dimensions or AdS spacetimes etc.) are straightforward generalizations.Comment: LaTex, 17 pages, final version, to appear in Phys. Rev.

    Universal conservation law and modified Noether symmetry in 2d models of gravity with matter

    Get PDF
    It is well-known that all 2d models of gravity---including theories with nonvanishing torsion and dilaton theories---can be solved exactly, if matter interactions are absent. An absolutely (in space and time) conserved quantity determines the global classification of all (classical) solutions. For the special case of spherically reduced Einstein gravity it coincides with the mass in the Schwarzschild solution. The corresponding Noether symmetry has been derived previously by P. Widerin and one of the authors (W.K.) for a specific 2d model with nonvanishing torsion. In the present paper this is generalized to all covariant 2d theories, including interactions with matter. The related Noether-like symmetry differs from the usual one. The parameters for the symmetry transformation of the geometric part and those of the matterfields are distinct. The total conservation law (a zero-form current) results from a two stage argument which also involves a consistency condition expressed by the conservation of a one-form matter ``current''. The black hole is treated as a special case.Comment: 3

    Geometric Interpretation and Classification of Global Solutions in Generalized Dilaton Gravity

    Get PDF
    Two dimensional gravity with torsion is proved to be equivalent to special types of generalized 2d dilaton gravity. E.g. in one version, the dilaton field is shown to be expressible by the extra scalar curvature, constructed for an independent Lorentz connection corresponding to a nontrivial torsion. Elimination of that dilaton field yields an equivalent torsionless theory, nonpolynomial in curvature. These theories, although locally equivalent exhibit quite different global properties of the general solution. We discuss the example of a (torsionless) dilaton theory equivalent to the R2+T2R^2 + T^2--model. Each global solution of this model is shown to split into a set of global solutions of generalized dilaton gravity. In contrast to the theory with torsion the equivalent dilaton one exhibits solutions which are asymptotically flat in special ranges of the parameters. In the simplest case of ordinary dilaton gravity we clarify the well known problem of removing the Schwarzschild singularity by a field redefinition.Comment: 21 pages, 6 Postscript figure

    The Universality of Einstein Equations

    Get PDF
    It is shown that for a wide class of analytic Lagrangians which depend only on the scalar curvature of a metric and a connection, the application of the so--called ``Palatini formalism'', i.e., treating the metric and the connection as independent variables, leads to ``universal'' equations. If the dimension nn of space--time is greater than two these universal equations are Einstein equations for a generic Lagrangian and are suitably replaced by other universal equations at bifurcation points. We show that bifurcations take place in particular for conformally invariant Lagrangians L=Rn/2gL=R^{n/2} \sqrt g and prove that their solutions are conformally equivalent to solutions of Einstein equations. For 2--dimensional space--time we find instead that the universal equation is always the equation of constant scalar curvature; the connection in this case is a Weyl connection, containing the Levi--Civita connection of the metric and an additional vectorfield ensuing from conformal invariance. As an example, we investigate in detail some polynomial Lagrangians and discuss their bifurcations.Comment: 15 pages, LaTeX, (Extended Version), TO-JLL-P1/9

    Renal Fanconi Syndrome and Hypophosphatemic Rickets in the Absence of Xenotropic and Polytropic Retroviral Receptor in the Nephron.

    Get PDF
    Tight control of extracellular and intracellular inorganic phosphate (Pi) levels is critical to most biochemical and physiologic processes. Urinary Pi is freely filtered at the kidney glomerulus and is reabsorbed in the renal tubule by the action of the apical sodium-dependent phosphate transporters, NaPi-IIa/NaPi-IIc/Pit2. However, the molecular identity of the protein(s) participating in the basolateral Pi efflux remains unknown. Evidence has suggested that xenotropic and polytropic retroviral receptor 1 (XPR1) might be involved in this process. Here, we show that conditional inactivation of Xpr1 in the renal tubule in mice resulted in impaired renal Pi reabsorption. Analysis of Pi transport in primary cultures of proximal tubular cells or in freshly isolated renal tubules revealed that this Xpr1 deficiency significantly affected Pi efflux. Further, mice with conditional inactivation of Xpr1 in the renal tubule exhibited generalized proximal tubular dysfunction indicative of Fanconi syndrome, characterized by glycosuria, aminoaciduria, calciuria, and albuminuria. Dramatic alterations in the renal transcriptome, including a significant reduction in NaPi-IIa/NaPi-IIc expression, accompanied these functional changes. Additionally, Xpr1-deficient mice developed hypophosphatemic rickets secondary to renal dysfunction. These results identify XPR1 as a major regulator of Pi homeostasis and as a potential therapeutic target in bone and kidney disorders

    Towards complete integrability of two dimensional Poincar\'e gauge gravity

    Get PDF
    It is shown that gravity on the line can be described by the two dimensional (2D) Hilbert-Einstein Lagrangian supplemented by a kinetic term for the coframe and a translational {\it boundary} term. The resulting model is equivalent to a Yang-Mills theory of local {\it translations} and frozen Lorentz gauge degrees. We will show that this restricted Poincar\'e gauge model in 2 dimensions is completely integrable. {\it Exact} wave, charged black hole, and `dilaton' solutions are then readily found. In vacuum, the integrability of the {\it general} 2D Poincar\'e gauge theory is formally proved along the same line of reasoning.Comment: 35 pages, report Cologne-thp-1993-H

    Positive specific heat of the quantum corrected dilaton black hole

    Full text link
    Path integral quantization of dilaton gravity in two dimensions is applied to the CGHS model to the first nontrivial order in matter loops. Our approach is background independent as geometry is integrated out exactly. The result is an effective shift of the Killing norm: the apparent horizon becomes smaller. The Hawking temperature which is constant to leading order receives a quantum correction. As a consequence, the specific heat becomes positive and proportional to the square of the black hole mass.Comment: 18 pages, JHEP style, 1 eps figure, v2: extended the discussion, added new formulas for mass change, added three new references (in particular [35]

    Classical self-forces in a space with a dispiration

    Full text link
    We derive the gravitational and electrostatic self-energies of a particle at rest in the background of a cosmic dispiration (topological defect), finding that the particle may experience potential steps, well potentials or potential barriers depending on the nature of the interaction and also on certain properties of the defect. The results may turn out to be useful in cosmology and condensed matter physics.Comment: 5 pages, 4 figures, revtex4 fil

    Classical and Quantum Gravity in 1+1 Dimensions, Part I: A Unifying Approach

    Full text link
    We provide a concise approach to generalized dilaton theories with and without torsion and coupling to Yang-Mills fields. Transformations on the space of fields are used to trivialize the field equations locally. In this way their solution becomes accessible within a few lines of calculation only. In this first of a series of papers we set the stage for a thorough global investigation of classical and quantum aspects of more or less all available 2D gravity-Yang-Mills models.Comment: 24 pages, no figures, some sign errors in Eqs. 52--59 have been corrected (according to the Erratum
    corecore