28 research outputs found
On the origin and evolution of the asteroid Ryugu: A comprehensive geochemical perspective
Presented here are the observations and interpretations from a comprehensive analysis of 16 representative particles returned from the C-type asteroid Ryugu by the Hayabusa2 mission. On average Ryugu particles consist of 50% phyllosilicate matrix, 41% porosity and 9% minor phases, including organic matter. The abundances of 70 elements from the particles are in close agreement with those of CI chondrites. Bulk Ryugu particles show higher δ18O, Δ17O, and ε54Cr values than CI chondrites. As such, Ryugu sampled the most primitive and least-thermally processed protosolar nebula reservoirs. Such a finding is consistent with multi-scale H-C-N isotopic compositions that are compatible with an origin for Ryugu organic matter within both the protosolar nebula and the interstellar medium. The analytical data obtained here, suggests that complex soluble organic matter formed during aqueous alteration on the Ryugu progenitor planetesimal (several 10’s of km), <2.6 Myr after CAI formation. Subsequently, the Ryugu progenitor planetesimal was fragmented and evolved into the current asteroid Ryugu through sublimation
Recommended from our members
A pristine record of outer Solar System materials from asteroid Ryugu’s returned sample
Volatile and organic-rich C-type asteroids may have been one of the main sources of Earth’s water. Our best insight into their chemistry is currently provided by carbonaceous chondritic meteorites, but the meteorite record is biased: only the strongest types survive atmospheric entry and are then modified by interaction with the terrestrial environment. Here we present the results of a detailed bulk and microanalytical study of pristine Ryugu particles, brought to Earth by the Hayabusa2 spacecraft. Ryugu particles display a close compositional match with the chemically unfractionated, but aqueously altered, CI (Ivuna-type) chondrites, which are widely used as a proxy for the bulk Solar System composition. The sample shows an intricate spatial relationship between aliphatic-rich organics and phyllosilicates and indicates maximum temperatures of ~30 °C during aqueous alteration. We find that heavy hydrogen and nitrogen abundances are consistent with an outer Solar System origin. Ryugu particles are the most uncontaminated and unfractionated extraterrestrial materials studied so far, and provide the best available match to the bulk Solar System composition
A dehydrated space-weathered skin cloaking the hydrated interior of Ryugu
Without a protective atmosphere, space-exposed surfaces of airless Solar System bodies gradually experience an alteration in composition, structure and optical properties through a collective process called space weathering. The return of samples from near-Earth asteroid (162173) Ryugu by Hayabusa2 provides the first opportunity for laboratory study of space-weathering signatures on the most abundant type of inner solar system body: a C-type asteroid, composed of materials largely unchanged since the formation of the Solar System. Weathered Ryugu grains show areas of surface amorphization and partial melting of phyllosilicates, in which reduction from Fe3+ to Fe2+ and dehydration developed. Space weathering probably contributed to dehydration by dehydroxylation of Ryugu surface phyllosilicates that had already lost interlayer water molecules and to weakening of the 2.7 µm hydroxyl (–OH) band in reflectance spectra. For C-type asteroids in general, this indicates that a weak 2.7 µm band can signify space-weathering-induced surface dehydration, rather than bulk volatile loss
Effects of subjective effort on overground and treadmill running: a comparative analysis
In this study, we investigated the differences in performance and kinematics between overground and treadmill running using the same amount of subjective effort. Fourteen female participants performed a 50-m sprint, running at maximum effort (100% subjective effort) as the maximal task on the ground. Subsequently, based on 100% subjective effort, they performed the grading task on the ground and on the treadmill at 30, 50, and 70% subjective effort. The running motion was recorded using a high-speed camera. We observed a significant difference in running velocity between the overground and treadmill conditions because treadmill running was recognized as having a greater load than overground running. The running velocity could be adjusted according to the subjective effort required for both overground and treadmill running. On the treadmill, running velocity was adjusted by maintaining flight time with increased subjective effort. Additionally, running velocity was adjusted by both step frequency and step length on the treadmill, whereas overground running velocity was adjusted by step frequency rather than step length. We also observed that overground, the knee angle was more flexible with an increase in subjective effort through one gait cycle, and the ankle joint was fixed at a high subjective effort. On the treadmill, the knee angle was adjusted only during the swing phase, and greater dorsiflexion was observed at high subjective effort
Flagellin Glycans from Two Pathovars of Pseudomonas syringae Contain Rhamnose in d and l Configurations in Different Ratios and Modified 4-Amino-4,6-Dideoxyglucose▿
Flagellins from Pseudomonas syringae pv. glycinea race 4 and Pseudomonas syringae pv. tabaci 6605 have been found to be glycosylated. Glycosylation of flagellin is essential for bacterial virulence and is also involved in the determination of host specificity. Flagellin glycans from both pathovars were characterized, and common sites of glycosylation were identified on six serine residues (positions 143, 164, 176, 183, 193, and 201). The structure of the glycan at serine 201 (S201) of flagellin from each pathovar was determined by sugar composition analysis, mass spectrometry, and 1H and 13C nuclear magnetic resonance spectroscopy. These analyses showed that the S201 glycans from both pathovars were composed of a common unique trisaccharide consisting of two rhamnosyl (Rha) residues and one modified 4-amino-4,6-dideoxyglucosyl (Qui4N) residue, β-d-Quip4N(3-hydroxy-1-oxobutyl)2Me-(1→3)-α-l-Rhap-(1→2)-α-l-Rhap. Furthermore, mass analysis suggests that the glycans on each of the six serine residues are composed of similar trisaccharide units. Determination of the enantiomeric ratio of Rha from the flagellin proteins showed that flagellin from P. syringae pv. tabaci 6605 consisted solely of l-Rha, whereas P. syringae pv. glycinea race 4 flagellin contained both l-Rha and d-Rha at a molar ratio of about 4:1. Taking these findings together with those from our previous study, we conclude that these flagellin glycan structures may be important for the virulence and host specificity of P. syringae
SDF-1 involvement in orthodontic tooth movement after tooth extraction
Abstract The stromal cell-derived factor 1 (SDF-1)/chemokine receptor type 4 (CXCR4) axis plays a key role in alveolar bone metabolism during orthodontic tooth movement (OTM). Herein, the effects of the SDF-1/CXCR4 axis on the regional acceleratory phenomenon (RAP) in OTM velocity and on changes in the surrounding periodontium after adjacent tooth extraction in rats were investigated. Six-week-old male Wistar/ST rats underwent left maxillary first molar (M1) extraction and mesial OTM of the left maxillary second molar (M2) with a 10-g force closed-coil spring. Phosphate-buffered saline, immunoglobulin G (IgG) isotype control antibody, or anti-SDF-1 neutralizing monoclonal antibody were injected at the M1 and M2 interproximal areas (10 μg/0.1 mL) for the first three days. Analyses were performed after 1, 3, and 7 days (n = 7). The results demonstrated a significant increase in SDF-1 expression from day 1, which was effectively blocked via anti-SDF-1 neutralizing monoclonal antibody injection. On day 3, the M2 OTM distance and the number of positively stained osteoclasts significantly reduced alongside a reduction in inflammatory markers in the experimental group. Our results demonstrated that serial local injection of the anti-SDF-1 neutralizing monoclonal antibody reduces M2 OTM, osteoclast accumulation, and localized inflammatory responses in an OTM model with tooth extraction-induced RAP