97 research outputs found

    Fluorescence Depletion by Stimulated Emission in Single-Molecule Spectroscopy

    Get PDF
    This thesis presents the first application of the stimulated emission depletion (STED) technique to the field of single-molecule fluorescence spectroscopy. It is demonstrated that fluorescence quenching induced by STED is reversible and can be repeated a large number of cycles on a single molecule. Being ideal point-like probes, single molecules can therefore be used to characterize the resolution of STED microscopes. In a spectroscopic study, two simplifed models of the photophysical processes involved in STED are analyzed and applied to the experimental determination of the stimulated emission cross sections on a single-molecule level. In addition, the STED concept as applied in subdiffraction-resolution microscopy is transferred to fluorescence fluctuation spectroscopy. A successful implementation promises to expand the possibilities particularly of fluorescence correlation spectroscopy (FCS) which is already the most widely used fluctuation technique today but is restricted to concentrations on the nanomolar scale. Reducing the detection volume beyond the diffraction limit could render the micromolar range accessible and could thus open up new applications in the life sciences

    Two-color STED microscopy reveals different degrees of colocalization between hexokinase-I and the three human VDAC isoforms

    Get PDF
    The voltage-dependent anion channel (VDAC, also known as mitochondrial porin) is the major transport channel mediating the transport of metabolites, including ATP, across the mitochondrial outer membrane. Biochemical data demonstrate the binding of the cytosolic protein hexokinase-I to VDAC, facilitating the direct access of hexokinase-I to the transported ATP. In human cells, three hVDAC isoforms have been identified. However, little is known on the distribution of these isoforms within the outer membrane of mitochondria and to what extent they colocalize with hexokinase-I. In this study we show that whereas hVDAC1 and hVDAC2 are localized predominantly within the same distinct domains in the outer membrane, hVDAC3 is mostly uniformly distributed over the surface of the mitochondrion. We used two-color stimulated emission depletion (STED) microscopy enabling a lateral resolution of ~40 nm to determine the detailed sub-mitochondrial distribution of the three hVDAC isoforms and hexokinase-I. Individual hVDAC and hexokinase-I clusters could thus be resolved which were concealed in the confocal images. Quantitative colocalization analysis of two-color STED images demonstrates that within the attained resolution, hexokinase-I and hVDAC3 exhibit a higher degree of colocalization than hexokinase-I with either hVDAC1 or hVDAC2. Furthermore, a substantial fraction of the mitochondria-bound hexokinase-I pool does not colocalize with any of the three hVDAC isoforms, suggesting a more complex interplay of these proteins than previously anticipated. This study demonstrates that two-color STED microscopy in conjunction with quantitative colocalization analysis is a powerful tool to study the complex distribution of membrane proteins in organelles such as mitochondria

    The low binding affinity of D-serine at the ionotropic glutamate receptor GluD2 can be attributed to the hinge region

    Get PDF
    Ionotropic glutamate receptors (iGluRs) are responsible for most of the fast excitatory communication between neurons in our brain. The GluD2 receptor is a puzzling member of the iGluR family: It is involved in synaptic plasticity, plays a role in human diseases, e.g. ataxia, binds glycine and D-serine with low affinity, yet no ligand has been discovered so far that can activate its ion channel. In this study, we show that the hinge region connecting the two subdomains of the GluD2 ligand-binding domain is responsible for the low affinity of D-serine, by analysing GluD2 mutants with electrophysiology, isothermal titration calorimetry and molecular dynamics calculations. The hinge region is highly variable among iGluRs and fine-tunes gating activity, suggesting that in GluD2 this region has evolved to only respond to micromolar concentrations of D-serine

    Recanalization Therapies for Large Vessel Occlusion Due to Cervical Artery Dissection: A Cohort Study of the EVA-TRISP Collaboration

    Get PDF
    Background and Purpose: This study aimed to investigate the effect of endovascular treatment (EVT, with or without intravenous thrombolysis [IVT]) versus IVT alone on outcomes in patients with acute ischemic stroke (AIS) and intracranial large vessel occlusion (LVO) attributable to cervical artery dissection (CeAD). Methods: This multinational cohort study was conducted based on prospectively collected data from the EVA-TRISP (EndoVAscular treatment and ThRombolysis for Ischemic Stroke Patients) collaboration. Consecutive patients (2015–2019) with AIS-LVO attributable to CeAD treated with EVT and/or IVT were included. Primary outcome measures were (1) favorable 3-month outcome (modified Rankin Scale score 0–2) and (2) complete recanalization (thrombolysis in cerebral infarction scale 2b/3). Odds ratios with 95% confidence intervals (OR [95% CI]) from logistic regression models were calculated (unadjusted, adjusted). Secondary analyses were performed in the patients with LVO in the anterior circulation (LVOant) including propensity score matching. Results: Among 290 patients, 222 (76.6%) had EVT and 68 (23.4%) IVT alone. EVT-treated patients had more severe strokes (National Institutes of Health Stroke Scale score, median [interquartile range]: 14 [10–19] vs. 4 [2–7], Padjusted 0.56 [0.24–1.32]). EVT was associated with higher rates of recanalization (80.5% vs. 40.7%; ORadjusted 8.85 [4.28–18.29]) compared to IVT. All secondary analyses showed higher recanalization rates in the EVT-group, which however never translated into better functional outcome rates compared to the IVT-group. Conclusion: We observed no signal of superiority of EVT over IVT regarding functional outcome in CeAD-patients with AIS and LVO despite higher rates of complete recanalization with EVT. Whether pathophysiological CeAD-characteristics or their younger age might explain this observation deserves further research

    EndoVAscular treatment and ThRombolysis for Ischemic Stroke Patients (EVA-TRISP) registry: basis and methodology of a pan-European prospective ischaemic stroke revascularisation treatment registry.

    Get PDF
    PURPOSE The Thrombolysis in Ischemic Stroke Patients (TRISP) collaboration was a concerted effort initiated in 2010 with the purpose to address relevant research questions about the effectiveness and safety of intravenous thrombolysis (IVT). The collaboration also aims to prospectively collect data on patients undergoing endovascular treatment (EVT) and hence the name of the collaboration was changed from TRISP to EVA-TRISP. The methodology of the former TRISP registry for patients treated with IVT has already been published. This paper focuses on describing the EVT part of the registry. PARTICIPANTS All centres committed to collecting predefined variables on consecutive patients prospectively. We aim for accuracy and completeness of the data and to adapt local databases to investigate novel research questions. Herein, we introduce the methodology of a recently constructed academic investigator-initiated open collaboration EVT registry built as an extension of an existing IVT registry in patients with acute ischaemic stroke (AIS). FINDINGS TO DATE Currently, the EVA-TRISP network includes 20 stroke centres with considerable expertise in EVT and maintenance of high-quality hospital-based registries. Following several successful randomised controlled trials (RCTs), many important clinical questions remain unanswered in the (EVT) field and some of them will unlikely be investigated in future RCTs. Prospective registries with high-quality data on EVT-treated patients may help answering some of these unanswered issues, especially on safety and efficacy of EVT in specific patient subgroups. FUTURE PLANS This collaborative effort aims at addressing clinically important questions on safety and efficacy of EVT in conditions not covered by RCTs. The TRISP registry generated substantial novel data supporting stroke physicians in their daily decision making considering IVT candidate patients. While providing observational data on EVT in daily clinical practice, our future findings may likewise be hypothesis generating for future research as well as for quality improvement (on EVT). The collaboration welcomes participation of further centres willing to fulfill the commitment and the outlined requirements
    • …
    corecore