15 research outputs found
Corticosterone Alters AMPAR Mobility and Facilitates Bidirectional Synaptic Plasticity
Background: The stress hormone corticosterone has the ability both to enhance and suppress synaptic plasticity and learning and memory processes. However, until today there is very little known about the molecular mechanism that underlies the bidirectional effects of stress and corticosteroid hormones on synaptic efficacy and learning and memory processes. In this study we investigate the relationship between corticosterone and AMPA receptors which play a critical role in activity-dependent plasticity and hippocampal-dependent learning. Methodology/Principal Findings: Using immunocytochemistry and live cell imaging techniques we show that corticosterone selectively increases surface expression of the AMPAR subunit GluR2 in primary hippocampal cultures via a glucocorticoid receptor and protein synthesis dependent mechanism. In agreement, we report that corticosterone also dramatically increases the fraction of surface expressed GluR2 that undergo lateral diffusion. Furthermore, our data indicate that corticosterone facilitates NMDAR-invoked endocytosis of both synaptic and extra-synaptic GluR2 under conditions that weaken synaptic transmission. Conclusion/Significance: Our results reveal that corticosterone increases mobile GluR2 containing AMPARs. The enhanced lateral diffusion properties can both facilitate the recruitment of AMPARs but under appropriate conditions facilitate the loss of synaptic AMPARs (LTD). These actions may underlie both the facilitating and suppressive effects of corticosteroid hormones on synaptic plasticity and learning and memory and suggest that these hormones accentuate synaptic efficacy
Disruption of AP1S1, Causing a Novel Neurocutaneous Syndrome, Perturbs Development of the Skin and Spinal Cord
Adaptor protein (AP) complexes regulate clathrin-coated vesicle assembly, protein cargo sorting, and vesicular trafficking between organelles in eukaryotic cells. Because disruption of the various subunits of the AP complexes is embryonic lethal in the majority of cases, characterization of their function in vivo is still lacking. Here, we describe the first mutation in the human AP1S1 gene, encoding the small subunit σ1A of the AP-1 complex. This founder splice mutation, which leads to a premature stop codon, was found in four families with a unique syndrome characterized by mental retardation, enteropathy, deafness, peripheral neuropathy, ichthyosis, and keratodermia (MEDNIK). To validate the pathogenic effect of the mutation, we knocked down Ap1s1 expression in zebrafish using selective antisens morpholino oligonucleotides (AMO). The knockdown phenotype consisted of perturbation in skin formation, reduced pigmentation, and severe motility deficits due to impaired neural network development. Both neural and skin defects were rescued by co-injection of AMO with wild-type (WT) human AP1S1 mRNA, but not by co-injecting the truncated form of AP1S1, consistent with a loss-of-function effect of this mutation. Together, these results confirm AP1S1 as the gene responsible for MEDNIK syndrome and demonstrate a critical role of AP1S1 in development of the skin and spinal cord
Transcriptome Analysis of Synaptoneurosomes Identifies Neuroplasticity Genes Overexpressed in Incipient Alzheimer's Disease
In Alzheimer's disease (AD), early deficits in learning and memory are a consequence of synaptic modification induced by toxic beta-amyloid oligomers (oAβ). To identify immediate molecular targets downstream of oAβ binding, we prepared synaptoneurosomes from prefrontal cortex of control and incipient AD (IAD) patients, and isolated mRNAs for comparison of gene expression. This novel approach concentrates synaptic mRNA, thereby increasing the ratio of synaptic to somal mRNA and allowing discrimination of expression changes in synaptically localized genes. In IAD patients, global measures of cognition declined with increasing levels of dimeric Aβ (dAβ). These patients also showed increased expression of neuroplasticity related genes, many encoding 3′UTR consensus sequences that regulate translation in the synapse. An increase in mRNA encoding the GluR2 subunit of the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) was paralleled by elevated expression of the corresponding protein in IAD. These results imply a functional impact on synaptic transmission as GluR2, if inserted, maintains the receptors in a low conductance state. Some overexpressed genes may induce early deficits in cognition and others compensatory mechanisms, providing targets for intervention to moderate the response to dAβ