30 research outputs found

    The genes for the inter-α-inhibitor family share a homologous organization in human and mouse

    Full text link
    Inter-α-inhibitor ( IαI ) and related molecules in human are comprised of three evolutionarily related, heavy (H) chains and one light (L) chain, also termed bikunin. The latter originates from a precursor molecule that is cleaved to yield the bikunin and another protein designated α-1-microglobulin (A1m). The four H and L chains are encoded by four distinct genes designated H1, H2, H3 , and L . The L and H2 genes are localized onto human chromosomes (chr) 9 and 10, respectively, whereas the H1 and H3 genes are tandemly arranged on chr 3.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46989/1/335_2004_Article_BF00355432.pd

    Derivation of non-lymphopenic BB rats with an intercross breeding

    No full text
    Previous studies have suggested that the development of diabetes in the BB rats does not require the expression of T lymphopenia. In order to derive non-lymphopenic diabetic rats and define the relationship between the T cell abnormalities, MHC genotype, and diabetes, we performed a cross between BB/H and diabetes resistant BB/control followed by an intercross of the F1. In the F2, the overall incidence of diabetes and lymphopenia was 30% and 27%, respectively. Lymphopenia was strongly associated with diabetes (p less than 0.001) and was seen in 76% of the diabetic F2's. However, 6 of the diabetic were non-lymphopenic (24%) and 3 of the non-diabetics were lymphopenic (5%). In the non-lymphopenic diabetic animals, all T cell levels were within the normal range, but diabetes occurred at an earlier age than their lymphopenic littermates (p less than 0.001). In contrast to the strong association between the inheritance of lymphopenia and diabetes, no relationship between diabetes and Class I MHC restriction fragment length polymorphisms was found. We conclude: 1) Diabetes and lymphopenia are strongly associated inherited abnormalities in the BB rat and are not associated with Class I RFLP defined genotypes within the RTIu haplotype, 2) Animals in whom diabetes occurs in the absence of lymphopenia can be derived using this breeding approach 3) In our non-lymphopenic rats, diabetes occurred at an earlier age possibly reflecting the restoration of quantitative or qualitative T cell defects found in lymphopenic BB rats

    Purification of antibodies using protein L-binding framework structures in the light chain variable domain

    No full text
    Protein L from the bacterial species Peptostreptococcus magnus binds specifically to the variable domain of Ig light chains, without interfering with the antigen-binding site. In this work a genetically engineered fragment of protein L, including four of the repeated Ig-binding repeat units, was employed for the purification of Ig from various sources. Thus, IgG, IgM, and IgA were purified from human and mouse serum in a single step using protein L-Sepharose affinity chromatography. Moreover, human and mouse monoclonal IgG, IgM, and IgA, and human IgG Fab fragments, as well as a mouse/human chimeric recombinant antibody, could be purified from cultures of hybridoma cells or antibody-producing bacterial cells, with protein L-Sepharose. This was also the case with a humanized mouse antibody, in which mouse hypervariable antigen-binding regions had been introduced into a protein L-binding kappa subtype III human IgG. These experiments demonstrate that it is possible to engineer antibodies and antibody fragments (Fab, Fv) with protein L-binding framework regions, which can then be utilized in a protein L-based purification protocol
    corecore