8 research outputs found

    Interindividual Variability in the Cytochrome P450 3A4 Drug Metabolizing Enzyme: Effect of the CYP3A4*1G Genetic Variant

    Get PDF
    Researchers and clinicians are interested in how a patient’s individual genetic makeup could predict the appropriate medication and dose for that patient. One way to predict drug response, or efficacy, is by looking at enzymes within the liver that metabolize drugs. Many of these enzymes belong to a class called the Cytochrome P450s (CYPs). Specifically, two closely related enzymes, CYP3A4 and CYP3A5, are involved in metabolizing 50% of drugs currently on the market (eg: statins, antiepileptics, anticancer agents, and antidepressants). There can be differences in the genetic code of these enzymes that can causes changes in drug metabolism. We completed a study with participants from the Confederated Salish and Kootenai Tribes (CSKT), located on the Flathead Reservation in northwest Montana. Select CYP enzymes were genotyped, including CYP3A4 and CYP3A5. Most SNPs identified in the CSKT participants were found at frequencies similar to those reported in European-descended populations. Interestingly, one specific SNP, called CYP3A4*1G, was discovered at a high allele frequency. The physiological significance of this SNP is unclear as there are limited and confounding data, however, most of the data published to date suggest that the SNP causes decreased metabolism of drugs. Clinically, this could result in a need for a decreased dose of medication. In addition, this CYP3A4 SNP was observed to be often inherited with another SNP in the related CYP3A5 gene, called CYP3A5*3, which encodes a nonfunctional enzyme. These SNPs found in the CSKT are of particular interest, because inheriting these two SNPs together could cause drastic changes in drug metabolism since the two enzymes metabolize many of the same drugs

    Drugs and DNA: How Genetics Affect Drug Metabolism

    Get PDF

    P-Glycoprotein Transport of Neurotoxic Pesticides

    Full text link

    Absence of P-Glycoprotein Transport in the Pharmacokinetics and Toxicity of the Herbicide Paraquat

    No full text
    Genetic variation in the multidrug resistance gene ABCB1, which encodes the efflux transporter P-glycoprotein (P-gp), has been associated with Parkinson disease. Our goal was to investigate P-gp transport of paraquat, a Parkinson-associated neurotoxicant. We used in vitro transport models of ATPase activity, xenobiotic-induced cytotoxicity, transepithelial permeability, and rhodamine-123 inhibition. We also measured paraquat pharmacokinetics and brain distribution in Friend leukemia virus B-type (FVB) wild-type and P-gp-deficient (mdr1a(-/-)/mdr1b(-/-)) mice following 10, 25, 50, and 100 mg/kg oral doses. In vitro data showed that: 1) paraquat failed to stimulate ATPase activity; 2) resistance to paraquat-induced cytotoxicity was unchanged in P-gp-expressing cells in the absence or presence of P-gp inhibitors GF120918 [N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide] and verapamil-37.0 [95% confidence interval (CI): 33.2-41.4], 46.2 (42.5-50.2), and 34.1 µM (31.2-37.2)-respectively; 3) transepithelial permeability ratios of paraquat were the same in P-gp-expressing and nonexpressing cells (1.55 ± 0.39 and 1.39 ± 0.43, respectively); and 4) paraquat did not inhibit rhodamine-123 transport. Population pharmacokinetic modeling revealed minor differences between FVB wild-type and mdr1a(-/-)/mdr1b(-/-) mice: clearances of 0.47 [95% confidence interval (CI): 0.42-0.52] and 0.78 l/h (0.58-0.98), respectively, and volume of distributions of 1.77 (95% CI: 1.50-2.04) and 3.36 liters (2.39-4.33), respectively; however, the change in clearance was in the opposite direction of what would be expected. It is noteworthy that paraquat brain-to-plasma partitioning ratios and total brain accumulation were the same across doses between FVB wild-type and mdr1a(-/-)/mdr1b(-/-) mice. These studies indicate that paraquat is not a P-gp substrate. Therefore, the association between ABCB1 pharmacogenomics and Parkinson disease is not attributed to alterations in paraquat transport

    Absence of P-Glycoprotein Transport in the Pharmacokinetics and Toxicity of the Herbicide Paraquat

    No full text
    Genetic variation in the multidrug resistance gene ABCB1, which encodes the efflux transporter P-glycoprotein (P-gp), has been associated with Parkinson disease. Our goal was to investigate P-gp transport of paraquat, a Parkinson-associated neurotoxicant. We used in vitro transport models of ATPase activity, xenobiotic-induced cytotoxicity, transepithelial permeability, and rhodamine-123 inhibition. We also measured paraquat pharmacokinetics and brain distribution in Friend leukemia virus B-type (FVB) wild-type and P-gp-deficient (mdr1a(-/-)/mdr1b(-/-)) mice following 10, 25, 50, and 100 mg/kg oral doses. In vitro data showed that: 1) paraquat failed to stimulate ATPase activity; 2) resistance to paraquat-induced cytotoxicity was unchanged in P-gp-expressing cells in the absence or presence of P-gp inhibitors GF120918 [N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide] and verapamil-37.0 [95% confidence interval (CI): 33.2-41.4], 46.2 (42.5-50.2), and 34.1 µM (31.2-37.2)-respectively; 3) transepithelial permeability ratios of paraquat were the same in P-gp-expressing and nonexpressing cells (1.55 ± 0.39 and 1.39 ± 0.43, respectively); and 4) paraquat did not inhibit rhodamine-123 transport. Population pharmacokinetic modeling revealed minor differences between FVB wild-type and mdr1a(-/-)/mdr1b(-/-) mice: clearances of 0.47 [95% confidence interval (CI): 0.42-0.52] and 0.78 l/h (0.58-0.98), respectively, and volume of distributions of 1.77 (95% CI: 1.50-2.04) and 3.36 liters (2.39-4.33), respectively; however, the change in clearance was in the opposite direction of what would be expected. It is noteworthy that paraquat brain-to-plasma partitioning ratios and total brain accumulation were the same across doses between FVB wild-type and mdr1a(-/-)/mdr1b(-/-) mice. These studies indicate that paraquat is not a P-gp substrate. Therefore, the association between ABCB1 pharmacogenomics and Parkinson disease is not attributed to alterations in paraquat transport
    corecore