4 research outputs found
Polyvinyl Alcohol (PVA)-Based Nanoniosome for Enhanced in vitro Delivery and Anticancer Activity of Thymol
Introduction: There is an unmet need to develop potent therapeutics against cancer with minimal side effects and systemic toxicity. Thymol (TH) is an herbal medicine with anti-cancer properties that has been investigated scientifically. This study shows that TH induces apoptosis in cancerous cell lines such as MCF-7, AGS, and HepG2. Furthermore, this study reveals that TH can be encapsulated in a Polyvinyl alcohol (PVA)-coated niosome (Nio-TH/PVA) to enhance its stability and enable its controlled release as a model drug in the cancerous region.
Materials and Methods: TH-loaded niosome (Nio-TH) was fabricated and optimized using Box–Behnken method and the size, polydispersity index (PDI) and entrapment efficiency (EE) were characterized by employing DLS, TEM and SEM, respectively. Additionally, in vitro drug release and kinetic studies were performed. Cytotoxicity, antiproliferative activity, and the mechanism were assessed by MTT assay, quantitative real-time PCR, flow cytometry, cell cycle, caspase activity evaluation, reactive oxygen species investigation, and cell migration assays.
Results: This study demonstrated the exceptional stability of Nio-TH/PVA at 4 °C for two months and its pH-dependent release profile. It also showed its high toxicity on cancerous cell lines and high compatibility with HFF cells. It revealed the modulation of Caspase-3/Caspase-9, MMP-2/MMP-9 and Cyclin D/ Cyclin E genes by Nio-TH/PVA on the studied cell lines. It confirmed the induction of apoptosis by Nio-TH/PVA in flow cytometry, caspase activity, ROS level, and DAPI staining assays. It also verified the inhibition of metastasis by Nio-TH/PVA in migration assays.
Conclusion: Overall, the results of this study revealed that Nio-TH/PVA may effectively transport hydrophobic drugs to cancer cells with a controlled-release profile to induce apoptosis while exhibiting no detectable side effects due to their biocompatibility with normal cells
Subcutaneous Injection of Allogeneic Adipose-Derived Mesenchymal Stromal Cells in Psoriasis Plaques: Clinical Trial Phase I
Objective: Mesenchymal stromal cells (MSCs) play immunomodulatory role in various autoimmune diseases. Previouspre-clinical and clinical studies have shown that MSCs could be a therapeutic modality for psoriasis. However, themechanisms of treatment and its possible side effects are under investigation. In this study, the safety and probableefficacy of injecting allogeneic adipose-derived mesenchymal stromal cells (ADSCs) in psoriatic patients were evaluated.Materials and Methods: In this phase I clinical study with six months of follow-up, total number of 1×106 or 3×106cells/cm2 of ADSCs were injected into the subcutaneous tissue of each plaque as a single dose in three males and twofemales (3M/2F) with a mean age of 32.8 ± 8.18. The primary outcome was safety. Changes in clinical and histologicalindexes, the number of B and T lymphocytes in local and peripheral blood, and serum levels of inflammatory cytokineswere assessed. Paired t test was used to compare variables at two time points (baseline and six months after injection)and repeated measures ANOVA test was utilized for variables at three time points in follow-up visits.Results: No major adverse effects such as burning, pain, itching, or any systemic side effects were observed followingADSCs injection, and the lesions showed slight to considerable improvement after injection. The mRNA expressionlevels of pro-inflammatory factors were reduced in the dermis of the patients after injection. The increased expressionlevel of Foxp3 transcription factor in the patient blood samples suggested modulation of inflammation after ADMSCsadministration. Six months after the intervention, no major side effects were reported, but skin thickness, erythema, andscaling of the plaques, as well as the PASI score, were decreased in majority of patients.Conclusion: Our study suggested that ADSC injection could be considered as a safe and effective therapeuticapproach for psoriatic plaques (registration number: IRCT20080728001031N24)
Amniotic Membrane and Its Derivatives: Novel Therapeutic Modalities in Liver Disorders
The liver is a vital organ responsible for metabolic and digestive functions, protein synthesis, detoxification, and numerous other necessary functions. Various acute, chronic, and neoplastic disorders affect the liver and hamper its biological functions. Most of the untreated liver diseases lead to inflammation and fibrosis which develop into cirrhosis. The human amniotic membrane (hAM), the innermost layer of the fetal placenta, is composed of multiple layers that include growth-factor rich basement membrane, epithelial and mesenchymal stromal cell layers. hAM possesses distinct beneficial anti-fibrotic, anti-inflammatory and pro-regenerative properties via the secretion of multiple potent trophic factors and/or direct differentiation into hepatic cells which place hAM-based therapies as potential therapeutic strategies for the treatment of chronic liver diseases. Decellularized hAM is also an ideal scaffold for liver tissue engineering as this biocompatible niche provides an excellent milieu for cell proliferation and hepatocytic differentiation. Therefore, the current review discusses the therapeutic potential of hAM and its derivatives in providing therapeutic solutions for liver pathologies including acute liver failure, metabolic disorders, liver fibrosis as well as its application in liver tissue engineering
Immunomodulatory performance of GMP-compliant, clinical-grade mesenchymal stromal cells from four different sources
Inflammatory and autoimmune diseases are among the most challenging disorders for health care professionals that require systemic immune suppression which associates with various side effects. Mesenchymal stromal cells (MSCs) are capable of regulating immune responses, mainly through paracrine effects and cell-cell contact. Since MSCs are advanced therapy medicinal products (ATMPs), they must follow Good Manufacturing Practice (GMP) regulations to ensure their safety and efficacy. In this study, we evaluated the immunomodulatory effects of GMP-compliant clinical grade MSCs obtained from four different sources (bone marrow, adipose tissue, Wharton’s Jelly, and decidua tissue) on allogeneic peripheral blood mononuclear cells (PBMCs). Our results revealed that WJ-MSCs were the most successful group in inhibiting PBMC proliferation as confirmed by BrdU analysis. Moreover, WJ-MSCs were the strongest group in enhancing the regulatory T cell population of PBMCs. WJ-MSCs also had the highest secretory profile of prostaglandin E2 (PGE-2), anti-inflammatory cytokine, while interleukin-10 (IL-10) secretion was highest in the DS-MSC group. DS-MSCs also had the lowest secretion of IL-12 and IL-17 inflammatory cytokines. Transcriptome analysis revealed that WJ-MSCs had the lowest expression of IL-6, while DS-MSCs were the most potent group in the expression of immunomodulatory factors such as hepatocyte growth factor (HGF) and transforming growth factor-β (TGF- β). Taken together, our results indicated that GMP-compliant Wharton’s Jelly and decidua-derived MSCs showed the best immunomodulatory performance considering paracrine factors