11 research outputs found

    Use of endoloop in video-assisted thoracoscopic enucleation of a very rare esophageal tumor

    Get PDF
    A gastrointestinal stromal tumor is an infrequent tumor of the gastrointestinal tract with very rare involvement of the esophagus. We present a case of a patient with dysphagia and a 4 cm submucosal mass. The patient underwent thoracoscopic enucleation with complete resection of the mass. We present case details and operative video highlighting the important surgical steps of exposure and retraction. We believe that the Endoloop is a very useful tool in providing countertraction needed during minimally invasive resection of such lesions

    Durable Complete Response from Metastatic Melanoma after Transfer of Autologous T Cells Recognizing 10 Mutated Tumor Antigens

    No full text
    Immunotherapy treatment of patients with metastatic cancer has assumed a prominent role in the clinic. Durable complete response rates of 20-25% are achieved in patients with metastatic melanoma following adoptive cell transfer of T cells derived from metastatic lesions, responses that appear in some patients to be mediated by T cells that predominantly recognize mutated antigens. Here we provide a detailed analysis of the reactivity of T cells administered to a patient with metastatic melanoma who exhibited a complete response for over 3 years after treatment. Over 4,000 nonsynonymous somatic mutations were identified by whole-exome sequence analysis of the patient’s autologous normal and tumor cell DNA. Autologous B cells transfected with 720 mutated minigenes corresponding to the most highly expressed tumor cell transcripts were then analyzed for their ability to stimulate the administered T cells. Autologous TIL recognized 10 distinct mutated gene products, but not the corresponding wild type products, each of which was recognized in the context of one of three different MHC class I restriction elements expressed by the patient. Detailed clonal analysis revealed that nine of the top 20 most prevalent clones present in the infused T cells, comprising approximately 24% of the total cells, recognized mutated antigens. Thus, we have identified and enriched mutation-reactive T cells and suggest that such analyses may lead to the development of more effective therapies for the treatment of patients with metastatic cancer

    Isolation of neoantigen-specific T cells from tumor and peripheral lymphocytes

    No full text
    Adoptively transferred tumor-infiltrating T lymphocytes (TILs) that mediate complete regression of metastatic melanoma have been shown to recognize mutated epitopes expressed by autologous tumors. Here, in an attempt to develop a strategy for facilitating the isolation, expansion, and study of mutated antigen-specific T cells, we performed whole-exome sequencing on matched tumor and normal DNA isolated from 8 patients with metastatic melanoma. Candidate mutated epitopes were identified using a peptide-MHC-binding algorithm, and these epitopes were synthesized and used to generate panels of MHC tetramers that were evaluated for binding to tumor digests and cultured TILs used for the treatment of patients. This strategy resulted in the identification of 9 mutated epitopes from 5 of the 8 patients tested. Cells reactive with 8 of the 9 epitopes could be isolated from autologous peripheral blood, where they were detected at frequencies that were estimated to range between 0.4% and 0.002%. To the best of our knowledge, this represents the first demonstration of the successful isolation of mutation-reactive T cells from patients' peripheral blood prior to immune therapy, potentially providing the basis for designing personalized immunotherapies to treat patients with advanced cancer

    Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients

    No full text
    Detection of lymphocytes that target tumor-specific mutant neoantigens--derived from products encoded by mutated genes in the tumor--is mostly limited to tumor-resident lymphocytes, but whether these lymphocytes often occur in the circulation is unclear. We recently reported that intratumoral expression of the programmed cell death 1 (PD-1) receptor can guide the identification of the patient-specific repertoire of tumor-reactive CD8(+) lymphocytes that reside in the tumor. In view of these findings, we investigated whether PD-1 expression on peripheral blood lymphocytes could be used as a biomarker to detect T cells that target neoantigens. By using a high-throughput personalized screening approach, we identified neoantigen-specific lymphocytes in the peripheral blood of three of four melanoma patients. Despite their low frequency in the circulation, we found that CD8(+)PD-1(+), but not CD8(+)PD-1(-), cell populations had lymphocytes that targeted 3, 3 and 1 unique, patient-specific neoantigens, respectively. We show that neoantigen-specific T cells and gene-engineered lymphocytes expressing neoantigen-specific T cell receptors (TCRs) isolated from peripheral blood recognized autologous tumors. Notably, the tumor-antigen specificities and TCR repertoires of the circulating and tumor-infiltrating CD8(+)PD-1(+) cells appeared similar, implying that the circulating CD8(+)PD-1(+) lymphocytes could provide a window into the tumor-resident antitumor lymphocytes. Thus, expression of PD-1 identifies a diverse and patient-specific antitumor T cell response in peripheral blood, providing a novel noninvasive strategy to develop personalized therapies using neoantigen-reactive lymphocytes or TCRs to treat cancer
    corecore