6 research outputs found

    MLOps: A Review

    Full text link
    Recently, Machine Learning (ML) has become a widely accepted method for significant progress that is rapidly evolving. Since it employs computational methods to teach machines and produce acceptable answers. The significance of the Machine Learning Operations (MLOps) methods, which can provide acceptable answers for such problems, is examined in this study. To assist in the creation of software that is simple to use, the authors research MLOps methods. To choose the best tool structure for certain projects, the authors also assess the features and operability of various MLOps methods. A total of 22 papers were assessed that attempted to apply the MLOps idea. Finally, the authors admit the scarcity of fully effective MLOps methods based on which advancements can self-regulate by limiting human engagement

    Roulette-Wheel Selection-Based PSO Algorithm for Solving the Vehicle Routing Problem with Time Windows

    Full text link
    The well-known Vehicle Routing Problem with Time Windows (VRPTW) aims to reduce the cost of moving goods between several destinations while accommodating constraints like set time windows for certain locations and vehicle capacity. Applications of the VRPTW problem in the real world include Supply Chain Management (SCM) and logistic dispatching, both of which are crucial to the economy and are expanding quickly as work habits change. Therefore, to solve the VRPTW problem, metaheuristic algorithms i.e. Particle Swarm Optimization (PSO) have been found to work effectively, however, they can experience premature convergence. To lower the risk of PSO's premature convergence, the authors have solved VRPTW in this paper utilising a novel form of the PSO methodology that uses the Roulette Wheel Method (RWPSO). Computing experiments using the Solomon VRPTW benchmark datasets on the RWPSO demonstrate that RWPSO is competitive with other state-of-the-art algorithms from the literature. Also, comparisons with two cutting-edge algorithms from the literature show how competitive the suggested algorithm is

    From Simulations to Reality: Enhancing Multi-Robot Exploration for Urban Search and Rescue

    Full text link
    In this study, we present a novel hybrid algorithm, combining Levy Flight (LF) and Particle Swarm Optimization (PSO) (LF-PSO), tailored for efficient multi-robot exploration in unknown environments with limited communication and no global positioning information. The research addresses the growing interest in employing multiple autonomous robots for exploration tasks, particularly in scenarios such as Urban Search and Rescue (USAR) operations. Multiple robots offer advantages like increased task coverage, robustness, flexibility, and scalability. However, existing approaches often make assumptions such as search area, robot positioning, communication restrictions, and target information that may not hold in real-world situations. The hybrid algorithm leverages LF, known for its effectiveness in large space exploration with sparse targets, and incorporates inter-robot repulsion as a social component through PSO. This combination enhances area exploration efficiency. We redefine the local best and global best positions to suit scenarios without continuous target information. Experimental simulations in a controlled environment demonstrate the algorithm's effectiveness, showcasing improved area coverage compared to traditional methods. In the process of refining our approach and testing it in complex, obstacle-rich environments, the presented work holds promise for enhancing multi-robot exploration in scenarios with limited information and communication capabilities

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects

    Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo

    Get PDF
    Advanced LIGO and Advanced Virgo are monitoring the sky and collecting gravitational-wave strain data with sufficient sensitivity to detect signals routinely. In this paper we describe the data recorded by these instruments during their first and second observing runs. The main data products are gravitational-wave strain time series sampled at 16384 Hz. The datasets that include this strain measurement can be freely accessed through the Gravitational Wave Open Science Center at http://gw-openscience.org, together with data-quality information essential for the analysis of LIGO and Virgo data, documentation, tutorials, and supporting software

    Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo

    No full text
    International audienceIntermediate-mass black holes (IMBHs) span the approximate mass range 100−105 M⊙, between black holes (BHs) that formed by stellar collapse and the supermassive BHs at the centers of galaxies. Mergers of IMBH binaries are the most energetic gravitational-wave sources accessible by the terrestrial detector network. Searches of the first two observing runs of Advanced LIGO and Advanced Virgo did not yield any significant IMBH binary signals. In the third observing run (O3), the increased network sensitivity enabled the detection of GW190521, a signal consistent with a binary merger of mass ∌150 M⊙ providing direct evidence of IMBH formation. Here, we report on a dedicated search of O3 data for further IMBH binary mergers, combining both modeled (matched filter) and model-independent search methods. We find some marginal candidates, but none are sufficiently significant to indicate detection of further IMBH mergers. We quantify the sensitivity of the individual search methods and of the combined search using a suite of IMBH binary signals obtained via numerical relativity, including the effects of spins misaligned with the binary orbital axis, and present the resulting upper limits on astrophysical merger rates. Our most stringent limit is for equal mass and aligned spin BH binary of total mass 200 M⊙ and effective aligned spin 0.8 at 0.056 Gpc−3 yr−1 (90% confidence), a factor of 3.5 more constraining than previous LIGO-Virgo limits. We also update the estimated rate of mergers similar to GW190521 to 0.08 Gpc−3 yr−1.Key words: gravitational waves / stars: black holes / black hole physicsCorresponding author: W. Del Pozzo, e-mail: [email protected]† Deceased, August 2020
    corecore