1,454 research outputs found

    Quantum Phase Transitions to Charge Order and Wigner Crystal Under Interplay of Lattice Commensurability and Long-Range Coulomb Interaction

    Full text link
    Relationship among Wigner crystal, charge order and Mott insulator is studied by the path-integral renormalization group method for two-dimensional lattices with long-range Coulomb interaction. In contrast to Hartree-Fock results, the solid stability drastically increases with lattice commensurability. The transition to liquid occurs at the electron gas parameter rs2r_s \sim 2 for the filling n=1/2n=1/2 showing large reduction from rs35r_s \sim 35 in the continuum limit. Correct account of quantum fluctuations are crucial to understand charge-order stability generally observed only at simple fractional fillings and nature of quantum liquids away from them.Comment: 4 pages including 7 figure

    Quantum-number projection in the path-integral renormalization group method

    Full text link
    We present a quantum-number projection technique which enables us to exactly treat spin, momentum and other symmetries embedded in the Hubbard model. By combining this projection technique, we extend the path-integral renormalization group method to improve the efficiency of numerical computations. By taking numerical calculations for the standard Hubbard model and the Hubbard model with next nearest neighbor transfer, we show that the present extended method can extremely enhance numerical accuracy and that it can handle excited states, in addition to the ground state.Comment: 11 pages, 7 figures, submitted to Phys. Rev.

    Finite-Temperature Mott Transition in the Two-Dimensional Hubbard Model

    Full text link
    Mott transitions are studied in the two-dimensional Hubbard model by a non-perturbative theory of correlator projection that systematically includes spatial correlations into the dynamical mean-field approximation. Introducing a nonzero second-neighbor transfer, a first-order Mott transition appears at finite temperatures and ends at a critical point or curve.Comment: 2 pages, to appear in J. Mag. Mag. Mat. as proceedings of the International Conference on Magnetism 200

    Precise estimation of shell model energy by second order extrapolation method

    Get PDF
    A second order extrapolation method is presented for shell model calculations, where shell model energies of truncated spaces are well described as a function of energy variance by quadratic curves and exact shell model energies can be obtained by the extrapolation. This new extrapolation can give more precise energy than those of first order extrapolation method. It is also clarified that first order extrapolation gives a lower limit of shell model energy. In addition to the energy, we derive the second order extrapolation formula for expectation values of other observables.Comment: PRC in pres

    Absence of Translational Symmetry Breaking in Nonmagnetic Insulator Phase on Two-Dimensional Lattice with Geometrical Frustration

    Full text link
    The ground-state properties of the two-dimensional Hubbard model with nearest-neighbor and next-nearest-neighbor hoppings at half filling are studied by the path-integral-renormalization-group method. The nonmagnetic-insulator phase sandwiched by the the paramagnetic-metal phase and the antiferromagnetic-insulator phase shows evidence against translational symmetry breaking of the dimerized state, plaquette singlet state, staggered flux state, and charge ordered state. These results support that the genuine Mott insulator which cannot be adiabatically continued to the band insulator is realized generically by Umklapp scattering through the effects of geometrical frustration and quantum fluctuation in the two-dimensional system.Comment: 4 pages and 7 figure

    An extrapolation method for shell model calculations

    Get PDF
    We propose a new shell model method, combining the Lanczos digonalization and extrapolation method. This method can give accurate shell model energy from a series of shell model calculations with various truncation spaces, in a well-controlled manner. Its feasibility is demonstrated by taking the fp shell calculations.Comment: 4 pages, 5 figure

    Thermodynamic Relations in Correlated Systems

    Full text link
    Several useful thermodynamic relations are derived for metal-insulator transitions, as generalizations of the Clausius-Clapeyron and Eherenfest theorems. These relations hold in any spatial dimensions and at any temperatures. First, they relate several thermodynamic quantities to the slope of the metal-insulator phase boundary drawn in the plane of the chemical potential and the Coulomb interaction in the phase diagram of the Hubbard model. The relations impose constraints on the critical properties of the Mott transition. These thermodynamic relations are indeed confirmed to be satisfied in the cases of the one- and two-dimensional Hubbard models. One of these relations yields that at the continuous Mott transition with a diverging charge compressibility, the doublon susceptibility also diverges. The constraints on the shapes of the phase boundary containing a first-order metal-insulator transition at finite temperatures are clarified based on the thermodynamic relations. For example, the first-order phase boundary is parallel to the temperature axis asymptotically in the zero temperature limit. The applicability of the thermodynamic relations are not restricted only to the metal-insulator transition of the Hubbard model, but also hold in correlated systems with any types of phases in general. We demonstrate such examples in an extended Hubbard model with intersite Coulomb repulsion containing the charge order phase.Comment: 10 pages, 9 figure

    From Display to Labelled Proofs for Tense Logics

    Get PDF
    We introduce an effective translation from proofs in the display calculus to proofs in the labelled calculus in the context of tense logics. We identify the labelled calculus proofs in the image of this translation as those built from labelled sequents whose underlying directed graph possesses certain properties. For the basic normal tense logic Kt, the image is shown to be the set of all proofs in the labelled calculus G3Kt

    On Deriving Nested Calculi for Intuitionistic Logics from Semantic Systems

    Get PDF
    This paper shows how to derive nested calculi from labelled calculi for propositional intuitionistic logic and first-order intuitionistic logic with constant domains, thus connecting the general results for labelled calculi with the more refined formalism of nested sequents. The extraction of nested calculi from labelled calculi obtains via considerations pertaining to the elimination of structural rules in labelled derivations. Each aspect of the extraction process is motivated and detailed, showing that each nested calculus inherits favorable proof-theoretic properties from its associated labelled calculus
    corecore