1,177 research outputs found
Quantum Phase Transitions to Charge Order and Wigner Crystal Under Interplay of Lattice Commensurability and Long-Range Coulomb Interaction
Relationship among Wigner crystal, charge order and Mott insulator is studied
by the path-integral renormalization group method for two-dimensional lattices
with long-range Coulomb interaction. In contrast to Hartree-Fock results, the
solid stability drastically increases with lattice commensurability. The
transition to liquid occurs at the electron gas parameter for the
filling showing large reduction from in the continuum
limit. Correct account of quantum fluctuations are crucial to understand
charge-order stability generally observed only at simple fractional fillings
and nature of quantum liquids away from them.Comment: 4 pages including 7 figure
Quantum-number projection in the path-integral renormalization group method
We present a quantum-number projection technique which enables us to exactly
treat spin, momentum and other symmetries embedded in the Hubbard model. By
combining this projection technique, we extend the path-integral
renormalization group method to improve the efficiency of numerical
computations. By taking numerical calculations for the standard Hubbard model
and the Hubbard model with next nearest neighbor transfer, we show that the
present extended method can extremely enhance numerical accuracy and that it
can handle excited states, in addition to the ground state.Comment: 11 pages, 7 figures, submitted to Phys. Rev.
Precise estimation of shell model energy by second order extrapolation method
A second order extrapolation method is presented for shell model
calculations, where shell model energies of truncated spaces are well described
as a function of energy variance by quadratic curves and exact shell model
energies can be obtained by the extrapolation. This new extrapolation can give
more precise energy than those of first order extrapolation method. It is also
clarified that first order extrapolation gives a lower limit of shell model
energy. In addition to the energy, we derive the second order extrapolation
formula for expectation values of other observables.Comment: PRC in pres
Numerical investigations of mechanical stress caused in dendrite by melt convection and gravity
In order to investigate the effects of stress around dendrite neck cased by the convection and gravity on the dendrite fragmentation, the novel numerical model, where phase-field method, Navier-Stokes equations and finite element method are continuously and independently employed, has been developed. By applying the model to the dendritic solidification of Al-Si alloy, the maximum stress variations by melt convection and gravity with dendrite growth were evaluated
Absence of Translational Symmetry Breaking in Nonmagnetic Insulator Phase on Two-Dimensional Lattice with Geometrical Frustration
The ground-state properties of the two-dimensional Hubbard model with
nearest-neighbor and next-nearest-neighbor hoppings at half filling are studied
by the path-integral-renormalization-group method. The nonmagnetic-insulator
phase sandwiched by the the paramagnetic-metal phase and the
antiferromagnetic-insulator phase shows evidence against translational symmetry
breaking of the dimerized state, plaquette singlet state, staggered flux state,
and charge ordered state. These results support that the genuine Mott insulator
which cannot be adiabatically continued to the band insulator is realized
generically by Umklapp scattering through the effects of geometrical
frustration and quantum fluctuation in the two-dimensional system.Comment: 4 pages and 7 figure
An extrapolation method for shell model calculations
We propose a new shell model method, combining the Lanczos digonalization and
extrapolation method. This method can give accurate shell model energy from a
series of shell model calculations with various truncation spaces, in a
well-controlled manner. Its feasibility is demonstrated by taking the fp shell
calculations.Comment: 4 pages, 5 figure
Nonmagnetic Insulating States near the Mott Transitions on Lattices with Geometrical Frustration and Implications for -(ET)Cu
We study phase diagrams of the Hubbard model on anisotropic triangular
lattices, which also represents a model for -type BEDT-TTF compounds.
In contrast with mean-field predictions, path-integral renormalization group
calculations show a universal presence of nonmagnetic insulator sandwitched by
antiferromagnetic insulator and paramagnetic metals. The nonmagnetic phase does
not show a simple translational symmetry breakings such as flux phases,
implying a genuine Mott insulator. We discuss possible relevance on the
nonmagnetic insulating phase found in -(ET)Cu.Comment: 4pages including 7 figure
Thermodynamic Relations in Correlated Systems
Several useful thermodynamic relations are derived for metal-insulator
transitions, as generalizations of the Clausius-Clapeyron and Eherenfest
theorems. These relations hold in any spatial dimensions and at any
temperatures. First, they relate several thermodynamic quantities to the slope
of the metal-insulator phase boundary drawn in the plane of the chemical
potential and the Coulomb interaction in the phase diagram of the Hubbard
model. The relations impose constraints on the critical properties of the Mott
transition. These thermodynamic relations are indeed confirmed to be satisfied
in the cases of the one- and two-dimensional Hubbard models. One of these
relations yields that at the continuous Mott transition with a diverging charge
compressibility, the doublon susceptibility also diverges. The constraints on
the shapes of the phase boundary containing a first-order metal-insulator
transition at finite temperatures are clarified based on the thermodynamic
relations. For example, the first-order phase boundary is parallel to the
temperature axis asymptotically in the zero temperature limit. The
applicability of the thermodynamic relations are not restricted only to the
metal-insulator transition of the Hubbard model, but also hold in correlated
systems with any types of phases in general. We demonstrate such examples in an
extended Hubbard model with intersite Coulomb repulsion containing the charge
order phase.Comment: 10 pages, 9 figure
Differential regulation of metalloproteinase production, proliferation and chemotaxis of human lung fibroblasts by PDGF, interleukin-1beta and TNF-alpha.
Fibroblast migration, proliferation, extracellular matrix protein synthesis and degradation, all of which play important roles in inflammation, are themselves induced by various growth factors and cytokines. Less is known about the interaction of these substances on lung fibroblast function in pulmonary fibrosis. The goal of this study was to investigate the effects of PDGF alone and in combination with IL-1beta and TNF-alpha on the production of human lung fibroblast matrix metalloproteinases, proliferation, and the chemotactic response. The assay for MMPs activity against FITC labeled type I and IV collagen was based on the specificity of the enzyme cleavage of collagen. Caseinolytis and gelatinolytic activities of secreted proteinases were analyzed by zymography. Fibronectin in conditioned media was measured using human lung fibronectin enzyme immunoassay. Cell proliferation was measured by 3H-Thymidine incorporation assay. Cell culture supernatants were tested for PGE2 content by ELISA. Chemotactic activity was measured using the modified Boyden chamber. Matrix metalloproteinase assay indicated that IL-1beta, TNF-alpha and PDGF induced intestitial collagenase (MMP-1) production. MMP assay also indicated that IL-1beta and TNF-alpha had inhibitory effects on MMP-2,9(gelatinaseA,B) production. Casein zymography confirmed that IL-1beta stimulated stromlysin (matrix metalloproteinase 3; MMP-3) and gelatin zymography demonstrated that TNF-alpha induced MMP-9 production in human lung fibroblast, whereas PDGF alone did not. PDGF in combination with IL-1beta and TNF-alpha induced MMP-3 and MMP-9 activity, as demonstrated by zymography. PDGF stimulated lung fibroblast proliferation in a concentration-dependent manner, whereas IL-1beta and TNF-alpha alone had no effect. In contrast, the proliferation of human lung fibroblasts by PDGF was inhibited in the presence of IL-1beta and TNF-alpha, and this inhibition was not a consequence of any elevation of PGE2. PDGF stimulated fibroblast chemotaxis in a concentration-dependent manner, and this stimulation was augmented by combining PDGF with IL-1beta and TNF-alpha. These findings suggested that PDGF differentially regulated MMPs production in combination with cytokines, and further that MMP assay and zymography had differential sensitivity for detecting MMPs. The presence of cytokines with PDGF appears to modulate the proliferation and chemotaxis of human lung fibroblasts
- …