3 research outputs found

    Ooidal ironstones in the Meso-Cenozoic sequences in western Siberia: assessment of formation processes and relationship with regional and global earth processes

    Get PDF
    This study investigates the process of formation of ooidal ironstones in the Upper Cretaceous-Paleogene succession in western Siberia. The formation of such carbonate-based ironstones is a continuing problem in sedimentary geology, and in this study, we use a variety of data and proxies assembled from core samples to develop a model to explain how the ooidal ironstones formed. Research on pyrite framboids and geochemical redox proxies reveals three intervals of oceanic hypoxia during the deposition of marine ooidal ironstones in the Late Cretaceous to the Early Paleogene Bakchar ironstone deposit in western Siberia; the absence of pyrite indicates oxic conditions for the remaining sequence. While goethite formed in oxic depositional condition, chamosite, pyrite and siderite represented hypoxic seawater. Euhedral pyrite crystals form through a series of transition originating from massive aggregate followed by normal and polygonal framboid. Sediments associated with goethite-chamosite ironstones, encompassing hypoxic intervals exhibit positive cerium, negative europium, and negative yttrium anomalies. Mercury anomalies, associated with the initial stages of hypoxia, correlate with global volcanic events. Redox sensitive proxies and ore mineral assemblages of deposits reflect hydrothermal activation. Rifting and global volcanism possibly induced hydrothermal convection in the sedimentary cover of western Siberia, and released iron-rich fluid and methane in coastal and shallow marine environments. This investigation, therefore, reveals a potential geological connection between Large Igneous Provinces (LIPs), marine hypoxia, rifting and the formation of ooidal ironstones in ancient West Siberian Sea

    Ooidal ironstones in the Meso-Cenozoic sequences in western Siberia: assessment of formation processes and relationship with regional and global earth processes

    Get PDF
    This study investigates the process of formation of ooidal ironstones in the Upper Cretaceous-Paleogene succession in western Siberia. The formation of such carbonate-based ironstones is a continuing problem in sedimentary geology, and in this study, we use a variety of data and proxies assembled from core samples to develop a model to explain how the ooidal ironstones formed. Research on pyrite framboids and geochemical redox proxies reveals three intervals of oceanic hypoxia during the deposition of marine ooidal ironstones in the Late Cretaceous to the Early Paleogene Bakchar ironstone deposit in western Siberia; the absence of pyrite indicates oxic conditions for the remaining sequence. While goethite formed in oxic depositional condition, chamosite, pyrite and siderite represented hypoxic seawater. Euhedral pyrite crystals form through a series of transition originating from massive aggregate followed by normal and polygonal framboid. Sediments associated with goethite-chamosite ironstones, encompassing hypoxic intervals exhibit positive cerium, negative europium, and negative yttrium anomalies. Mercury anomalies, associated with the initial stages of hypoxia, correlate with global volcanic events. Redox sensitive proxies and ore mineral assemblages of deposits reflect hydrothermal activation. Rifting and global volcanism possibly induced hydrothermal convection in the sedimentary cover of western Siberia, and released iron-rich fluid and methane in coastal and shallow marine environments. This investigation, therefore, reveals a potential geological connection between Large Igneous Provinces (LIPs), marine hypoxia, rifting and the formation of ooidal ironstones in ancient West Siberian Sea

    Identifying sources of organic carbon in surface sediments of Laptev Sea shelf using a Rock-Eval approach

    No full text
    ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ исслСдования обусловлСна Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒΡŽ всСстороннСго изучСния процСссов, отвСтствСнных Π·Π° измСнСния биогСохимичСского Ρ€Π΅ΠΆΠΈΠΌΠ° арктичСского Ρ€Π΅Π³ΠΈΠΎΠ½Π°. Π£Π²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ Ρ‚Π΅ΠΌΠΏΠΎΠ² Π΄Π΅Π³Ρ€Π°Π΄Π°Ρ†ΠΈΠΈ ΠΏΡ€ΠΈΠ±Ρ€Π΅ΠΆΠ½ΠΎΠΉ ΠΈ ΠΏΠΎΠ΄Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΌΠ΅Ρ€Π·Π»ΠΎΡ‚Ρ‹ Π½Π° Восточно-Бибирском ΡˆΠ΅Π»ΡŒΡ„Π΅ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Π²ΠΎΠ²Π»Π΅Ρ‡Π΅Π½ΠΈΡŽ Π² соврСмСнный биогСохимичСский Ρ†ΠΈΠΊΠ» большого объСма Ρ€Π΅ΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ органичСского ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π°. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ особСнностСй Π΅Π³ΠΎ транспорта ΠΈ прСобразования Π² систСмС ΡΡƒΡˆΠ°-ΡˆΠ΅Π»ΡŒΡ„ ΠΈΠ³Ρ€Π°Π΅Ρ‚ Π²Π°ΠΆΠ½ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ для ΠΎΡ†Π΅Π½ΠΊΠΈ функционирования ΠΊΡ€Π°ΠΉΠ½Π΅ Ρ…Ρ€ΡƒΠΏΠΊΠΎΠΉ арктичСской экосистСмы. ЦСль: ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ гСохимичСских характСристик органичСского вСщСства, прослСТиваСмых ΠΏΠΎ ΠΏΡ€ΠΎΡ„ΠΈΠ»ΡŽ ΠΎΡ‚ Π±Π΅Ρ€Π΅Π³ΠΎΠ²ΠΎΠΉ Π·ΠΎΠ½Ρ‹ ΠΊ ΠΊΠΎΠ½Ρ‚ΠΈΠ½Π΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΌΡƒ склону моря Π›Π°ΠΏΡ‚Π΅Π²Ρ‹Ρ… с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Rock-Eval ΠΈ ΠΎΡ†Π΅Π½ΠΊΠ° ΠΈΡ… взаимосвязи с литологичСскими свойствами Π²ΠΌΠ΅Ρ‰Π°ΡŽΡ‰ΠΈΡ… осадков. ΠžΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠΌ исслСдования явились ΠΏΡ€ΠΎΠ±Ρ‹ Π΄ΠΎΠ½Π½Ρ‹Ρ… осадков, взятыС с повСрхностного Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π° (0-2 см). ΠžΡ‚Π±ΠΎΡ€ ΠΏΡ€ΠΎΠ± проводился Π² морских арктичСских экспСдициях 2018-2019 Π³Π³. Π½Π° НИБ «АкадСмик ΠœΡΡ‚ΠΈΡΠ»Π°Π² ΠšΠ΅Π»Π΄Ρ‹ΡˆΒ». Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. На основС Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² пиролитичСского Π°Π½Π°Π»ΠΈΠ·Π° Π΄Π°Π½Π° гСохимичСская характСристика органичСского вСщСства, содСрТащСгося Π² Π΄ΠΎΠ½Π½Ρ‹Ρ… осадках моря Π›Π°ΠΏΡ‚Π΅Π²Ρ‹Ρ…. ΠžΡ€Π³Π°Π½ΠΈΡ‡Π΅ΡΠΊΠΎΠ΅ вСщСство, экспортируСмоС с Ρ€Π΅Ρ‡Π½Ρ‹ΠΌ стоком ΠΈ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Π°ΠΌΠΈ Π±Π΅Ρ€Π΅Π³ΠΎΠ²ΠΎΠΉ эрозии, характСризуСтся ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π½ΠΈΠ·ΠΊΠΈΠΌ кислородным (OI) ΠΈ Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π½Ρ‹ΠΌ (HI) индСксами Π² ΠΏΡ€ΠΈΠ±Ρ€Π΅ΠΆΠ½ΠΎΠΉ Π·ΠΎΠ½Π΅ ΠΈ Π½Π° Π³Π»ΡƒΠ±ΠΈΠ½Π°Ρ… Π΄ΠΎ Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… дСсятков ΠΌΠ΅Ρ‚Ρ€ΠΎΠ². Π’ Ρ€Π°ΠΉΠΎΠ½Π΅ срСднСго ΡˆΠ΅Π»ΡŒΡ„Π° сущСствСнноС влияниС Π½Π° состав органичСского вСщСства, ΠΏΠΎ всСй видимости, ΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ снос осадочного вСщСства с Новосибирских островов, Π³Π΄Π΅ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎ Π΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‚ Ρ‚Π΅Ρ€ΠΌΠΎΠ°Π±Ρ€Π°Π·ΠΈΠΎΠ½Π½Ρ‹Π΅ процСссы (сниТСниС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ HI ΠΈ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ OI). Высказано ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ для ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ², выносимых Ρ€Π΅Ρ‡Π½Ρ‹ΠΌ стоком, ΠΈ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² эрозии Π±Π΅Ρ€Π΅Π³ΠΎΠ² Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ пиролитичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹, опрСдСляСмыС ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Rock-Eval (Π² частности, значСния HI, OI ΠΈ Tpeak).An increasing rate of degradation of coastal and subsea permafrost leads to remobilization of huge amounts of organic carbon. To know how this remobilized carbon behaves while being transported through the land-shelf system is crucially important for understanding an extremely fragile Arctic ecosystem. This study is aimed at tracing the geochemical signals of organic matter along the profile from the coastal zone to the continental slope of the Laptev Sea, using the Rock-Eval approach. We investigated surface sediment samples obtained during the Arctic marine expeditions of 2018-2019 on the R/V "Akademik Mstislav Keldysh". The most active oxidation of organic matter, exported with river runoff and products of coastal erosion, occurs in the coastal zone at a depth of several tens of meters. A significant effect on the organic matter composition is exerted by the sediment export from Novosibirsk Islands eroding coastlines. We assume that various products carried by river runoff and coastal erosion are characterized by various signatures detected by the Rock-Eval method (e.g., the OI and Tpeak values). It is also shown that the mineral matrix does not seem to provide a first-order control on preventing organic matter degradation during transport from the coastal zone to deep-sea basins
    corecore