3 research outputs found

    On-chip spatiotemporal optical vortex generation using an integrated metal-dielectric resonator

    Full text link
    We theoretically demonstrate the possibility of generating a spatiotemporal optical vortex (STOV) beam in a dielectric slab waveguide. The STOV is generated upon reflection of a spatiotemporal optical pulse from an integrated metal-dielectric structure consisting of metal strips "buried" in the waveguide. For describing the interaction of the incident pulse with the integrated structure, we derive its "vectorial" spatiotemporal transfer function (TF) describing the transformation of the electromagnetic field components of the incident pulse. We show that if the TF of the structure corresponds to the TF of a spatiotemporal differentiator with a π/2\pi/2 phase difference between the terms describing temporal and spatial differentiation, then the envelope of the reflected pulse will contain an STOV in all nonzero components of the electromagnetic field. The obtained theoretical results are in good agreement with the results of rigorous numerical simulation of the STOV generation using a three-strip metal-dielectric integrated structure. We believe that the presented results pave the way for the research and application of STOV beams in the on-chip geometry.Comment: 14 pages, 5 figure

    Plasmonic Generation of Spatiotemporal Optical Vortices

    No full text
    We investigate the transformation of spatiotemporal optical signals using the Kretschmann configuration with an additional dielectric layer, which can be referred to as the “generalized Kretschmann setup”. We demonstrate that in the considered structure, it is possible to achieve the condition of generating a reflected optical pulse containing a spatiotemporal optical vortex, which appears to be impossible in the conventional Kretschmann configuration. High-quality generation of spatiotemporal optical vortices using the investigated structure was confirmed by the results of rigorous numerical simulations. The obtained results are promising for applications in analog optical computing and optical information processing systems

    Plasmonic Generation of Spatiotemporal Optical Vortices

    No full text
    We investigate the transformation of spatiotemporal optical signals using the Kretschmann configuration with an additional dielectric layer, which can be referred to as the “generalized Kretschmann setup”. We demonstrate that in the considered structure, it is possible to achieve the condition of generating a reflected optical pulse containing a spatiotemporal optical vortex, which appears to be impossible in the conventional Kretschmann configuration. High-quality generation of spatiotemporal optical vortices using the investigated structure was confirmed by the results of rigorous numerical simulations. The obtained results are promising for applications in analog optical computing and optical information processing systems
    corecore