268 research outputs found
Recommended from our members
Enabling Sharing in Auctions for Short-Term Spectrum Licenses
Wireless spectrum is a valuable and scarce resource that currently suffers from under-use because of the dominant paradigm of exclusive-use licensing. We propose the SATYA auction (Sanskrit for truth), which allows short-term leases to be auctioned and supports diverse bidder types, including those willing to share access and those who require exclusive-use access. Thus, unlike unlicensed spectrum such as Wi-Fi, which can be shared by any device, and exclusive-use licensed spectrum, where sharing is precluded, SATYA improves efficiency through supporting sharing alongside quality-of-service protections. The auction is designed to be scalable, and also strategy proof, so that simple bidding protocols are optimal. The primary challenge is to handle the externalities created by allocating shared-use alongside exclusive-use bidders. Using realistic Longley-Rice based propagation modeling and data from the FCC’s CDBS database, we conduct extensive simulations that demonstrate SATYA’s ability to handle heterogeneous bidders involving different transmit powers and spectrum needs.Engineering and Applied Science
Allocation in Practice
How do we allocate scarcere sources? How do we fairly allocate costs? These
are two pressing challenges facing society today. I discuss two recent projects
at NICTA concerning resource and cost allocation. In the first, we have been
working with FoodBank Local, a social startup working in collaboration with
food bank charities around the world to optimise the logistics of collecting
and distributing donated food. Before we can distribute this food, we must
decide how to allocate it to different charities and food kitchens. This gives
rise to a fair division problem with several new dimensions, rarely considered
in the literature. In the second, we have been looking at cost allocation
within the distribution network of a large multinational company. This also has
several new dimensions rarely considered in the literature.Comment: To appear in Proc. of 37th edition of the German Conference on
Artificial Intelligence (KI 2014), Springer LNC
The Role of Nonequilibrium Dynamical Screening in Carrier Thermalization
We investigate the role played by nonequilibrium dynamical screening in the
thermalization of carriers in a simplified two-component two-band model of a
semiconductor. The main feature of our approach is the theoretically sound
treatment of collisions. We abandon Fermi's Golden rule in favor of a
nonequilibrium field theoretic formalism as the former is applicable only in
the long-time regime. We also introduce the concept of nonequilibrium dynamical
screening. The dephasing of excitonic quantum beats as a result of
carrier-carrier scattering is brought out. At low densities it is found that
the dephasing times due to carrier-carrier scattering is in picoseconds and not
femtoseconds, in agreement with experiments. The polarization dephasing rates
are computed as a function of the excited carrier density and it is found that
the dephasing rate for carrier-carrier scattering is proportional to the
carrier density at ultralow densities. The scaling relation is sublinear at
higher densities, which enables a comparison with experiment.Comment: Revised version with additional refs. 12 pages, figs. available upon
request; Submitted to Phys. Rev.
Charged Many-Electron -- Single Hole Complexes in a Double Quantum Well near a Metal Plate
It has been shown that the presence of a metal plate near a double quantum
well with spatially separated electron and hole layers may lead to a drastic
reconstruction of the system state with the formation of stable charged
complexes of several electrons bound to a spatially separated hole. Complexes
of both the Fermi and the Bose statistics may coexist in the ground state and
their relative densities may be changed with the change of the electron and
hole densities. The stability of the charged complexes may be increased by an
external magnetic field perpendicular to the layers plane.Comment: to appear in Phys.Rev.Lett. 77, No.7 (1996). 4 pages, RevTeX, 1
figur
Drag in paired electron-hole layers
We investigate transresistance effects in electron-hole double layer systems
with an excitonic condensate. Our theory is based on the use of a minimum
dissipation premise to fix the current carried by the condensate. We find that
the drag resistance jumps discontinuously at the condensation temperature and
diverges as the temperature approaches zero.Comment: 12 pages, 1 Figure, .eps file attache
Laser induced breakdown of the magnetic field reversal symmetry in the propagation of unpolarized light
We show how a medium, under the influece of a coherent control field which is
resonant or close to resonance to an appropriate atomic transition, can lead to
very strong asymmetries in the propagation of unpolarized light when the
direction of the magnetic field is reversed. We show how EIT can be used to
mimic effects occuring in natural systems and that EIT can produce very large
asymmetries as we use electric dipole allowed transitions. Using density matrix
calculations we present results for the breakdown of the magnetic field
reversal symmetry for two different atomic configurations.Comment: RevTex, 6 pages, 10 figures, Two Column format, submitted to Phys.
Rev.
Engineering Superfluidity in Electron-Hole Double Layers
We show that band-structure effects are likely to prevent superfluidity in
semiconductor electron-hole double-layer systems. We suggest the possibility
that superfluidity could be realized by the application of uniaxial pressure
perpendicular to the electron and hole layers.Comment: 4 pages, includes 3 figure
Slow group velocity and Cherenkov radiation
We theoretically study the effect of ultraslow group velocities on the
emission of Vavilov-Cherenkov radiation in a coherently driven medium. We show
that in this case the aperture of the group cone on which the intensity of the
radiation peaks is much smaller than that of the usual wave cone associated
with the Cherenkov coherence condition. We show that such a singular behaviour
may be observed in a coherently driven ultracold atomic gas.Comment: 4 pages, 4 figure
A Knob for Changing Light Propagation from Subluminal to Superluminal
We show how the application of a coupling field connecting the two lower
metastable states of a lambda-system can produce a variety of new results on
the propagation of a weak electromagnetic pulse. In principle the light
propagation can be changed from subluminal to superluminal. The negative group
index results from the regions of anomalous dispersion and gain in
susceptibility.Comment: 6 pages,5 figures, typed in RevTeX, accepted in Phys. Rev.
Storage of light in atomic vapor
We report an experiment in which a light pulse is decelerated and trapped in
a vapor of Rb atoms, stored for a controlled period of time, and then released
on demand. We accomplish this storage of light by dynamically reducing the
group velocity of the light pulse to zero, so that the coherent excitation of
the light is reversibly mapped into a collective Zeeman (spin) coherence of the
Rb vapor
- …