80 research outputs found
Anti-inflammatory effects of hepatocyte growth factor: induction of interleukin-1 receptor antagonist
Hepatocyte growth factor (HGF) prevents liver failure in various animal models including endotoxin-induced acute liver failure. We were interested to find out whether human HGF exerts anti-inflammatory effects by modulation of cytokine synthesis. Therefore, human HepG2 cells were cultured with increasing concentrations of HGF. HGF dose-dependently upregulated the production of interleukin-1 receptor antagonist (IL-1Ra). Incubation of HepG2 cells with interleukin-1beta (IL-1beta) caused an increase in IL-1Ra levels, while interleukin-6 (IL-6) had no effect on IL-1Ra synthesis. Co-stimulation of HepG2 cells with HGF + IL-1beta resulted in a synergistic effect on IL-1Ra mRNA and protein expression. Stimulation of freshly isolated mouse hepatocytes from male C57 BL/6 mice with HGF increased IL-1Ra mRNA and protein synthesis dose-dependently. A co-stimulation with HGF and IL-1beta had a synergistic effect on IL-1Ra mRNA expression but only a partially additive effect on IL-1Ra protein synthesis. HGF-induced IL-1Ra production was significantly decreased by the mitogen-activated protein kinase (MAPK) inhibitor PD98059. Accordingly, HGF stimulation specifically increased MAPK-dependent signalling pathway (p42/44). In contrast, in preactivated PBMC mRNA expression and protein synthesis of IL-1Ra, interleukin-10 (IL-10) and tumor necrosis factor-alpha (TNF-alpha) were unaffected after stimulation with HGF. In conclusion, our data suggest that HGF exerts anti-inflammatory effects by modulating the signal transduction cascade leading to increased expression of IL-1Ra, which might explain the protective and regenerative properties of this cytokine in animal models of liver failure
FAMIN is a multifunctional purine enzyme enabling the purine nucleotide cycle
Mutations in FAMIN cause arthritis and inflammatory bowel disease in early childhood, and a common genetic variant increases risk for Crohn’s disease and leprosy. We developed an unbiased liquid chromatography mass spectrometry screen for enzymatic activity of this orphan protein. We report that FAMIN phosphorolytically cleaves adenosine into adenine and ribose-1-phosphate. Such activity was considered absent from eukaryotic metabolism. FAMIN and its prokaryotic paralogues additionally have adenosine deaminase, purine nucleoside phosphorylase, and S-methyl-5'-thioadenosine phosphorylase activity, hence combine activities of the namesake enzymes of central purine metabolism. FAMIN enables in macrophages a purine nucleotide cycle (PNC) between adenosine and inosine monophosphate and adenylosuccinate, which consumes aspartate and releases fumarate in a manner involving fatty acid oxidation and ATP-citrate lyase activity. This macrophage PNC synchronises mitochondrial activity with glycolysis by balancing electron transfer to mitochondria, thereby supporting glycolytic activity and promoting oxidative phosphorylation and mitochondrial H+ and phosphate recycling.Includes ERC. Wellcome Trust and MRC
Recommended from our members
ER stress transcription factor Xbp1 suppresses intestinal tumorigenesis and directs intestinal stem cells
Unresolved endoplasmic reticulum (ER) stress in the epithelium can provoke intestinal inflammation. Hypomorphic variants of ER stress response mediators, such as X-box–binding protein 1 (XBP1), confer genetic risk for inflammatory bowel disease. We report here that hypomorphic Xbp1 function instructs a multilayered regenerative response in the intestinal epithelium. This is characterized by intestinal stem cell (ISC) expansion as shown by an inositol-requiring enzyme 1α (Ire1α)–mediated increase in Lgr5+ and Olfm4+ ISCs and a Stat3-dependent increase in the proliferative output of transit-amplifying cells. These consequences of hypomorphic Xbp1 function are associated with an increased propensity to develop colitis-associated and spontaneous adenomatous polyposis coli (APC)–related tumors of the intestinal epithelium, which in the latter case is shown to be dependent on Ire1α. This study reveals an unexpected role for Xbp1 in suppressing tumor formation through restraint of a pathway that involves an Ire1α- and Stat3-mediated regenerative response of the epithelium as a consequence of ER stress. As such, Xbp1 in the intestinal epithelium not only regulates local inflammation but at the same time also determines the propensity of the epithelium to develop tumors
Control of CD1d-restricted antigen presentation and inflammation by sphingomyelin.
Invariant natural killer T (iNKT) cells recognize activating self and microbial lipids presented by CD1d. CD1d can also bind non-activating lipids, such as sphingomyelin. We hypothesized that these serve as endogenous regulators and investigated humans and mice deficient in acid sphingomyelinase (ASM), an enzyme that degrades sphingomyelin. We show that ASM absence in mice leads to diminished CD1d-restricted antigen presentation and iNKT cell selection in the thymus, resulting in decreased iNKT cell levels and resistance to iNKT cell-mediated inflammatory conditions. Defective antigen presentation and decreased iNKT cells are also observed in ASM-deficient humans with Niemann-Pick disease, and ASM activity in healthy humans correlates with iNKT cell phenotype. Pharmacological ASM administration facilitates antigen presentation and restores the levels of iNKT cells in ASM-deficient mice. Together, these results demonstrate that control of non-agonistic CD1d-associated lipids is critical for iNKT cell development and function in vivo and represents a tight link between cellular sphingolipid metabolism and immunity
Recommended from our members
Open-label extension of a phase 2 trial of risankizumab in patients with moderate-to-severe Crohn's disease
Background: Risankizumab, an anti-interleukin-23 antibody, was superior to placebo in achieving clinical and endoscopic remission at week 12 in a randomised, phase 2 induction study in patients with moderately to severely active Crohn’s disease. The efficacy and safety of extended intravenous induction and/or subcutaneous maintenance therapy with risankizumab was assessed.
Methods: Following 12-week, double-blind, randomised, induction treatment comparing 200 mg or 600 mg intravenous risankizumab to placebo every 4 weeks, patients without deep remission, defined as clinical (Crohn’s Disease Activity Index <150) and endoscopic remission (Crohn’s Disease Endoscopic Index of Severity [CDEIS] ≤4 [≤2 for patients with isolated ileitis]), received open-label 600 mg intravenous risankizumab (every 4 weeks) and patients in deep remission underwent washout until week 26 (Period 2). At week 26, patients in clinical remission received maintenance treatment (Period 3) with 180 mg subcutaneous risankizumab (every 8 weeks). Efficacy endpoints included clinical and endoscopic response and remission at weeks 26 (Period 2) and 52 (Period 3) respectively; safety was assessed through both periods. Study registration: ClinicalTrials.gov, NCT02031276.
Findings: In Period 2, 101 patients were treated with 600 mg risankizumab resulting in an increase in clinical remission rates at week 26 versus week 12 for all original designated treatment groups: 55% versus 18%, 59% versus 21%, and 47% versus 26% for placebo, 200, and 600 mg risankizumab, respectively. Of the 62 patients receiving maintenance treatment, 54 completed treatment. At week 52, clinical remission was maintained by 71% of patients; endoscopic remission and response (>50% CDEIS reduction from baseline) was achieved by 35% and 55% of patients, respectively, and 29% of patients achieved deep remission. Risankizumab was well tolerated with no new safety signals.
Interpretation: Extended induction treatment with open-label intravenous risankizumab was effective in increasing clinical response and remission rates at week 26. Open-label subcutaneous risankizumab maintained remission till week 52 in most patients who were in clinical remission at week 26. Selective blockade of interleukin-23 warrants further evaluation as treatment for Crohn’s disease.Boehringer Ingelhei
A purine metabolic checkpoint that prevents autoimmunity and autoinflammation.
Still's disease, the paradigm of autoinflammation-cum-autoimmunity, predisposes for a cytokine storm with excessive T lymphocyte activation upon viral infection. Loss of function of the purine nucleoside enzyme FAMIN is the sole known cause for monogenic Still's disease. Here we discovered that a FAMIN-enabled purine metabolon in dendritic cells (DCs) restrains CD4+ and CD8+ T cell priming. DCs with absent FAMIN activity prime for enhanced antigen-specific cytotoxicity, IFNγ secretion, and T cell expansion, resulting in excessive influenza A virus-specific responses. Enhanced priming is already manifest with hypomorphic FAMIN-I254V, for which ∼6% of mankind is homozygous. FAMIN controls membrane trafficking and restrains antigen presentation in an NADH/NAD+-dependent manner by balancing flux through adenine-guanine nucleotide interconversion cycles. FAMIN additionally converts hypoxanthine into inosine, which DCs release to dampen T cell activation. Compromised FAMIN consequently enhances immunosurveillance of syngeneic tumors. FAMIN is a biochemical checkpoint that protects against excessive antiviral T cell responses, autoimmunity, and autoinflammation
Mouse Background Strain Profoundly Influences Paneth Cell Function and Intestinal Microbial Composition
Increasing evidence supports the central role of Paneth cells in maintaining intestinal host-microbial homeostasis. However, the direct impact of host genotype on Paneth cell function remains unclear. Here, we characterize key differences in Paneth cell function and intestinal microbial composition in two widely utilized, genetically distinct mouse strains (C57BL/6 and 129/SvEv). In doing so, we demonstrate critical influences of host genotype on Paneth cell activity and the enteric microbiota.Paneth cell numbers were determined by flow cytometry. Antimicrobial peptide (AMP) expression was evaluated using quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR), acid urea-polyacrylamide gel electrophoresis, and mass spectrometry. Effects of mouse background on microbial composition were assessed by reciprocal colonization of germ-free mice from both background strains, followed by compositional analysis of resultant gut bacterial communities using terminal restriction fragment length polymorphism analysis and 16 S qPCR. Our results revealed that 129/SvEv mice possessed fewer Paneth cells and a divergent AMP profile relative to C57BL/6 counterparts. Novel 129/SvEv á-defensin peptides were identified, including Defa2/18v, Defa11, Defa16, and Defa18. Host genotype profoundly affected the global profile of the intestinal microbiota, while both source and host factors were found to influence specific bacterial groups. Interestingly, ileal α-defensins from 129/SvEv mice displayed attenuated antimicrobial activity against pro-inflammatory E. coli strains, a bacterial species found to be expanded in these animals.This work establishes the important impact of host genotype on Paneth cell function and the composition of the intestinal microbiota. It further identifies specific AMP and microbial alterations in two commonly used inbred mouse strains that have varying susceptibilities to a variety of disorders, ranging from obesity to intestinal inflammation. This will be critical for future studies utilizing these murine backgrounds to study the effects of Paneth cells and the intestinal microbiota on host health and disease
Recommended from our members
Impaired Autophagy in CD11b+ Dendritic Cells Expands CD4+ Regulatory T Cells And Limits Atherosclerosis in Mice.
Rationale: Atherosclerosis is a chronic inflammatory disease. Recent studies have shown that dysfunctional autophagy in endothelial cells, smooth muscle cells and macrophages, plays a detrimental role during atherogenesis, leading to the suggestion that autophagy-stimulating approaches may provide benefit. Objective: Dendritic cells (DCs) are at the crossroad of innate and adaptive immune responses and profoundly modulate the development of atherosclerosis. Intriguingly, the role of autophagy in DC function during atherosclerosis and how the autophagy process would impact disease development has not been addressed. Methods and Results: Here, we show that the autophagic flux in atherosclerosis-susceptible low-density lipoprotein receptor deficient (Ldlr-/-) mice is substantially higher in splenic and aortic DCs compared to macrophages, and is further activated under hypercholesterolemic conditions. RNA sequencing and functional studies on selective cell populations reveal that disruption of autophagy through deletion of Atg16l1 differentially affects the biology and functions of DC subsets in Ldlr-/- mice under high fat diet. Atg16l1 deficient CD11b+ DCs develop a TGF-beta-dependent tolerogenic phenotype and promote the expansion of regulatory T cells (Tregs), whereas no such effects are seen with Atg16l1 deficient CD8alpha+ DCs. Atg16l1 deletion in DCs (all CD11c-expressing cells) expands aortic Tregs in vivo, limits the accumulation of T helper cells type 1 (Th1), and reduces the development of atherosclerosis in Ldlr-/- mice. In contrast, no such effects are seen when Atg16l1 is deleted selectively in conventional CD8alpha+ DCs and CD103+ DCs. Total T cell or selective Treg cell depletion abrogates the atheroprotective effect of Atg16l1 deficient DCs. Conclusions: In contrast to its pro-atherogenic role in macrophages, autophagy disruption in DCs induces a counter-regulatory response that maintains immune homeostasis in Ldlr-/- mice under high fat diet and limits atherogenesis. Selective modulation of autophagy in DCs could constitute an interesting therapeutic target in atherosclerosis.This study was supported by the British Heart Foundation (CH/10/001/27642 and Grant No. 1659), and the European HEALTH 2013.1.3-3 programm
Epithelial endoplasmic reticulum stress orchestrates a protective IgA response.
Immunoglobulin A (IgA) is the major secretory immunoglobulin isotype found at mucosal surfaces, where it regulates microbial commensalism and excludes luminal factors from contacting intestinal epithelial cells (IECs). IgA is induced by both T cell-dependent and -independent (TI) pathways. However, little is known about TI regulation. We report that IEC endoplasmic reticulum (ER) stress induces a polyreactive IgA response, which is protective against enteric inflammation. IEC ER stress causes TI and microbiota-independent expansion and activation of peritoneal B1b cells, which culminates in increased lamina propria and luminal IgA. Increased numbers of IgA-producing plasma cells were observed in healthy humans with defective autophagy, who are known to exhibit IEC ER stress. Upon ER stress, IECs communicate signals to the peritoneum that induce a barrier-protective TI IgA response.Wellcome Trust Senior Investigator Award 106260/Z/14/Z
HORIZON2020/European Research Council Consolidator Grant 64888
Cholangiocytes derived from human induced pluripotent stem cells for disease modeling and drug validation.
The study of biliary disease has been constrained by a lack of primary human cholangiocytes. Here we present an efficient, serum-free protocol for directed differentiation of human induced pluripotent stem cells into cholangiocyte-like cells (CLCs). CLCs show functional characteristics of cholangiocytes, including bile acids transfer, alkaline phosphatase activity, γ-glutamyl-transpeptidase activity and physiological responses to secretin, somatostatin and vascular endothelial growth factor. We use CLCs to model in vitro key features of Alagille syndrome, polycystic liver disease and cystic fibrosis (CF)-associated cholangiopathy. Furthermore, we use CLCs generated from healthy individuals and patients with polycystic liver disease to reproduce the effects of the drugs verapamil and octreotide, and we show that the experimental CF drug VX809 rescues the disease phenotype of CF cholangiopathy in vitro. Our differentiation protocol will facilitate the study of biological mechanisms controlling biliary development, as well as disease modeling and drug screening.This work was funded by ERC starting grant Relieve IMDs (L.V., N.H.), the Cambridge Hospitals National Institute for Health Research Biomedical Research Center (L.V., N.H., F.S.), the Evelyn trust (N.H.) and the EU Fp7 grant TissuGEN (M.CDB.). FS has been supported by an Addenbrooke’s Charitable Trust Clinical Research Training Fellowship and a joint MRC-Sparks Clinical Research Training Fellowship.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nbt.327
- …