1 research outputs found

    āļĢāļ°āļšāļšāđ€āļāđ‰āļēāļŠāļąāļ‡āđ€āļāļ•āđāļĨāļ°āļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļāļēāļĢāđ€āļˆāļĢāļīāļāđ€āļ•āļīāļšāđ‚āļ•āļ‚āļ­āļ‡āļ­āđ‰āļ­āļĒāđ‚āļ”āļĒāđƒāļŠāđ‰āđ‚āļ”āļĢāļ™āļŠāļąāļ‡āđ€āļāļ•āļāļēāļĢāļ“āđŒMonitoring and Analysis System of Sugarcane Growth Using Observation Drone

    No full text
    āļ­āđ‰āļ­āļĒāļˆāļąāļ”āđ€āļ›āđ‡āļ™āļžāļ·āļŠāđ€āļĻāļĢāļĐāļāļāļīāļˆāļ—āļĩāđˆāļŠāļģāļ„āļąāļāļŠāļ™āļīāļ”āļŦāļ™āļķāđˆāļ‡āļ‚āļ­āļ‡āļ›āļĢāļ°āđ€āļ—āļĻāđ„āļ—āļĒ āđāļĨāļ°āļŠāļēāļĄāļēāļĢāļ–āļ™āļģāđ„āļ›āđƒāļŠāđ‰āđ€āļ›āđ‡āļ™āļ§āļąāļ•āļ–āļļāļ”āļīāļšāļŠāļģāļŦāļĢāļąāļšāļ­āļļāļ•āļŠāļēāļŦāļāļĢāļĢāļĄāļ™āđ‰āļģāļ•āļēāļĨ āļāļēāļĢāļŠāļģāļĢāļ§āļˆāđāļ›āļĨāļ‡āļ­āđ‰āļ­āļĒāļˆāļ°āļ—āļģāđƒāļŦāđ‰āļ—āļĢāļēāļšāļ–āļķāļ‡āļāļēāļĢāđ€āļ›āļĨāļĩāđˆāļĒāļ™āđāļ›āļĨāļ‡āļ‚āļ­āļ‡āļ•āđ‰āļ™āļ­āđ‰āļ­āļĒāđƒāļ™āđāļ›āļĨāļ‡āļ­āđ‰āļ­āļĒ āļ”āļąāļ‡āļ™āļąāđ‰āļ™āļˆāļķāļ‡āļĄāļĩāļāļēāļĢāđƒāļŠāđ‰āđ‚āļ”āļĢāļ™āļŠāļąāļ‡āđ€āļāļ•āļāļēāļĢāļ“āđŒāļ•āļīāļ”āļāļĨāđ‰āļ­āļ‡āđ€āļžāļ·āđˆāļ­āļ—āļģāļāļēāļĢāļŠāļģāļĢāļ§āļˆāđāļ›āļĨāļ‡āļ­āđ‰āļ­āļĒāđƒāļ™āļšāļĢāļīāđ€āļ§āļ“āļ—āļĩāđˆāđ€āļ‚āđ‰āļēāļ–āļķāļ‡āđ„āļ”āđ‰āļĒāļēāļ āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļžāļąāļ’āļ™āļēāļ‚āļķāđ‰āļ™āđ€āļžāļ·āđˆāļ­āļ–āđˆāļēāļĒāļ āļēāļžāđāļĨāļ°āļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļ āļēāļžāļ‚āļ­āļ‡āđāļ›āļĨāļ‡āļ­āđ‰āļ­āļĒāļ—āļĩāđˆāļ„āļĢāļ­āļšāļ„āļĨāļļāļĄāļžāļ·āđ‰āļ™āļ—āļĩāđˆāļāļ§āđ‰āļēāļ‡āļ‹āļķāđˆāļ‡āļāļēāļĢāļŠāļąāļ‡āđ€āļāļ•āļ”āđ‰āļ§āļĒāļ•āļēāđ€āļ›āļĨāđˆāļēāļ­āļēāļˆāļ—āļģāđ„āļ”āđ‰āļĒāļēāļāđāļĨāļ°āđ„āļĄāđˆāļ—āļąāđˆāļ§āļ–āļķāļ‡ āļĢāļ°āļšāļšāļ—āļĩāđˆāļžāļąāļ’āļ™āļēāļ‚āļķāđ‰āļ™āļ›āļĢāļ°āļāļ­āļšāļ”āđ‰āļ§āļĒāļŠāļ­āļ‡āļŠāđˆāļ§āļ™āļ„āļ·āļ­āļŠāđˆāļ§āļ™āļŦāļ™āđ‰āļēāđāļĨāļ°āļŠāđˆāļ§āļ™āļŦāļĨāļąāļ‡ āļŠāļģāļŦāļĢāļąāļšāļŠāđˆāļ§āļ™āļŦāļ™āđ‰āļēāļˆāļ°āđ€āļ›āđ‡āļ™āđ€āļ§āđ‡āļšāđāļ­āļ›āļžāļĨāļīāđ€āļ„āļŠāļąāļ™āļšāļ™āļŠāļĄāļēāļĢāđŒāļ—āđ‚āļŸāļ™āļŠāļģāļŦāļĢāļąāļšāđ€āļ›āđ‡āļ™āļŠāđˆāļ§āļ™āļ•āđˆāļ­āļ›āļĢāļ°āļŠāļēāļ™āļāļąāļšāļœāļđāđ‰āđƒāļŠāđ‰ āļ‹āļķāđˆāļ‡āđƒāļŠāđ‰āđƒāļ™āļāļēāļĢāļĢāļąāļšāļ āļēāļžāļ–āđˆāļēāļĒāļˆāļēāļāđ‚āļ”āļĢāļ™āđāļĨāļ°āđāļŠāļ”āļ‡āļœāļĨāļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļāļēāļĢāļ›āļĢāļ°āļĄāļ§āļĨāļœāļĨāļ āļēāļž āđ‚āļ”āļĒāļˆāļ°āļĢāļąāļšāļŠāđˆāļ‡āļ‚āđ‰āļ­āļĄāļđāļĨāđāļĨāļ°āļ āļēāļžāļāļąāļšāļŠāđˆāļ§āļ™āļŦāļĨāļąāļ‡āļœāđˆāļēāļ™āļ—āļēāļ‡ Firebase Realtime Database āđāļĨāļ° Firebase Cloud Storage āđƒāļ™āļŠāđˆāļ§āļ™āļŦāļĨāļąāļ‡āļˆāļ°āļ›āļĢāļ°āļāļ­āļšāļ”āđ‰āļ§āļĒāđ‚āļ›āļĢāđāļāļĢāļĄāļ„āļģāļ™āļ§āļ“āđ‚āļ”āļĒāđƒāļŠāđ‰ MATLAB āļšāļ™āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āđ€āļ‹āļīāļĢāđŒāļŸāđ€āļ§āļ­āļĢāđŒāđāļĨāļ°āļ—āļĩāđˆāđ€āļāđ‡āļšāļ‚āđ‰āļ­āļĄāļđāļĨāļšāļ™āļ„āļĨāļēāļ§āļ”āđŒāļ‚āļ­āļ‡ Firebase āđ‚āļĄāđ€āļ”āļĨāļŠāļĩ HSV āđāļĨāļ° YCbCr āļĢāļ§āļĄāļ—āļąāđ‰āļ‡āļ­āļąāļĨāļāļ­āļĢāļīāļ—āļķāļĄ Otsu Thresholding āļ–āļđāļāđƒāļŠāđ‰āļŠāļģāļŦāļĢāļąāļšāļāļēāļĢāļ›āļĢāļ°āļĄāļ§āļĨāļœāļĨāļ āļēāļžāļ”āļīāļˆāļīāļ—āļąāļĨ āļˆāļēāļāļ™āļąāđ‰āļ™āđƒāļŠāđ‰āļŠāļ„āļĢāļīāļ›āļ•āđŒ Isgreen āļŠāļģāļŦāļĢāļąāļšāļāļēāļĢāđāļĒāļāļŠāļĩāđ€āļžāļ·āđˆāļ­āļ„āļģāļ™āļ§āļ“āđ€āļ›āļ­āļĢāđŒāđ€āļ‹āđ‡āļ™āļ•āđŒāļ‚āļ­āļ‡āļŠāļĩāđ€āļ‚āļĩāļĒāļ§āļ‚āļ­āļ‡āļ āļēāļžāđāļ›āļĨāļ‡āļ­āđ‰āļ­āļĒ āļœāļĨāļĨāļąāļžāļ˜āđŒāļ—āļĩāđˆāđ„āļ”āđ‰āļˆāļ°āđāļŠāļ”āļ‡āđ€āļ›āđ‡āļ™āļāļĢāļēāļŸāļšāļ™āļŦāļ™āđ‰āļēāđ€āļ§āđ‡āļšāđāļ­āļ›āļžāļĨāļīāđ€āļ„āļŠāļąāļ™ āļ‹āļķāđˆāļ‡āļœāļĨāļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļ™āļĩāđ‰āļˆāļ°āļŠāđˆāļ§āļĒāđƒāļŦāđ‰āļœāļđāđ‰āđƒāļŠāđ‰āļŦāļĢāļ·āļ­āđ€āļāļĐāļ•āļĢāļāļĢāļŠāļēāļĄāļēāļĢāļ–āļ•āļąāļ”āļŠāļīāļ™āđƒāļˆāđ€āļāļĩāđˆāļĒāļ§āļāļąāļšāđ€āļ§āļĨāļēāļ—āļĩāđˆāđ€āļŦāļĄāļēāļ°āļŠāļĄāļ—āļĩāđˆāļˆāļ°āđ€āļāđ‡āļšāđ€āļāļĩāđˆāļĒāļ§āļ•āđ‰āļ™āļ­āđ‰āļ­āļĒāđ„āļ”āđ‰ āļˆāļēāļāļāļēāļĢāļ—āļ”āļŠāļ­āļšāļāļēāļĢāļ—āļģāļ‡āļēāļ™āļ‚āļ­āļ‡āđ€āļ§āđ‡āļšāđāļ­āļ›āļžāļĨāļīāđ€āļ„āļŠāļąāļ™āļžāļšāļ§āđˆāļēāļŠāļēāļĄāļēāļĢāļ–āļ—āļģāļ‡āļēāļ™āđ„āļ”āđ‰āļ­āļĒāđˆāļēāļ‡āļ–āļđāļāļ•āđ‰āļ­āļ‡āļ„āļīāļ”āđ€āļ›āđ‡āļ™āļĢāđ‰āļ­āļĒāļĨāļ° 98.46 āđāļĨāļ°āļˆāļēāļāļāļēāļĢāļ—āļ”āļŠāļ­āļšāļāļēāļĢāļ›āļĢāļ°āļĄāļ§āļĨāļœāļĨāļ āļēāļžāļœāđˆāļēāļ™āđ‚āļ›āļĢāđāļāļĢāļĄ MATLAB āđ‚āļ”āļĒāđƒāļŠāđ‰āļŠāļļāļ”āļ‚āđ‰āļ­āļĄāļđāļĨāļ›āļāļ•āļīāđāļĨāļ°āđ„āļĄāđˆāļ›āļāļ•āļī (āđ‚āļ”āļĒāļāļēāļĢāļŦāļĄāļļāļ™āļ āļēāļž) āļžāļšāļ§āđˆāļēāđ‚āļ›āļĢāđāļāļĢāļĄāļŠāļēāļĄāļēāļĢāļ–āđāļĒāļāļŠāļ™āļīāļ”āļ‚āļ­āļ‡āļžāļ·āļŠāđ„āļ”āđ‰āļ­āļĒāđˆāļēāļ‡āļ–āļđāļāļ•āđ‰āļ­āļ‡āļ„āļīāļ”āđ€āļ›āđ‡āļ™āļĢāđ‰āļ­āļĒāļĨāļ° 98.89 āđāļĨāļ° 93.85 āļ•āļēāļĄāļĨāļģāļ”āļąāļšSugarcane is one of the important economic crops of Thailand and generally used as a raw material for sugar industry. The survey of sugarcane field indicates the changes of sugarcane plants in sugarcane field. Therefore, the observation drone with camera is used for survey sugarcane field in hard-to-reach areas. This research is developed to take and analyze images of sugarcane field covering a wide area that cannot be observed thoroughly. The developed system consists of two parts: front-end part and backend part. The front-end part contains a web application on smartphone for user interface which is used to take the images from drone and show the results of image processing analysis. Data and images are transferred to the back-end part via Firebase Realtime Database and Firebase Cloud Storage. The back-end part includes a computational program using MATLAB on server and data storage on Firebase Cloud. HSV and YCbCr color models and also Otsu Thresholding algorithm are used for digital image processing. Then Isgreen script is used for color separation to calculate the percentage of a green color of sugarcane field images. The results are displayed in graph on the web application. These help users or farmers make a decision about the right time for harvesting sugarcane. From the functional test of the web application, it was found that 98.46% of the test was correct. Moreover, based on the image processing test via MATLAB using normal and non-normal data sets (by rotating the images), it was found that the program was able to correctly distinguish 98.89% and 93.85% of the plant species respectively
    corecore