4 research outputs found
A method for direct assessment of the "non rainfall" atmospheric water cycle: Input and evaporation from the soil
"Non rainfall" atmospheric water (dew, fog, vapour adsorption) supplies a small amount of water to the soil surface that may be important for arid soil micro-hydrology and ecology. Research into the direct effects of this water on soil is, however, lacking due to instrument and technical constraints. We report on the design, development, construction and findings of an automated microlysimeter instrument to directly measure this soil water cycle in Stellenbosch, South Africa during winter. Performance of the microlysimeter was satisfactory and results obtained were compared to literature and fell within the expected range. "Non rainfall" atmospheric water input into bare soil (river sand) was between 0.88 and 1.10 mm per night while evaporation was between 1.39 and 2.71 mm per day. The study also attempted to differentiate the composition of "non rainfall" atmospheric water and results showed that vapour adsorption contributed the bulk of this input. © 2011 Springer Basel AG
The effects of desert pavements (gravel mulch) on soil micro-hydrology
The effect of desert pavements (gravel mulch) on near surface soil micro-hydrology has been inadequately studied. Micro-hydrology in arid ecosystems occurs due to a daily non rainfall atmospheric water cycle, consisting of an input phase (dew, fog, vapour adsorption) and an evaporation phase. A winter comparative study between a bare soil (control) and gravel mulch using the automated microlysimeter approach was conducted in Stellenbosch, South Africa in 2008. Results showed that dew deposition and direct water vapour adsorption were significantly higher into bare soil compared to gravel mulch. In contrast, however, soil moisture from rain persists for a longer time under gravel mulch compared to bare soil. This result suggests that the greatest impact of gravel mulch on soil micro-hydrology is towards conserving moisture and could explain why the treatment is used in dry-land agriculture in Mediterranean regions. © 2011 Springer Basel AG
Physical ecology of hypolithic communities in the central Namib Desert: The role of fog, rain, rock habitat, and light
Hypolithic microbial communities are productive niches in deserts worldwide, but many facets of their basic ecology remain unknown. The Namib Desert is an important site for hypolith study because it has abundant quartz rocks suitable for colonization and extends west to east across a transition from fog- to rain-dominated moisture sources. We show that fog sustains and impacts hypolithic ecology in several ways, as follows: (1) fog effectively replaces rainfall in the western zone of the central Namib to enable high (?95%) hypolithic abundance at landscape (1–10 km) and larger scales; and (2) high water availability, through fog (western zone) and/or rainfall (eastern zone), results in smaller size-class rocks being colonized (mean 6.3?±?1.2 cm) at higher proportions (e.g., 98% versus approximately 3%) than in previously studied hyperarid deserts. We measured 0.1% of incident sunlight as the lower limit for hypolithic growth on quartz rocks in the Namib and found that uncolonized ventral rock surfaces were limited by light rather than moisture. In situ monitoring showed that although rainfall supplied more liquid water (36 h) per event than fog (mean 4 h), on an equivalent annual basis, fog provided nearly twice as much liquid water as rainfall to the hypolithic zone. Hypolithic abundance reaches 100% at a mean annual precipitation (MAP) of approximately 40–60 mm, but at a much lower MAP (approximately 25 mm) when moisture from fog is available
The ASOS Surgical Risk Calculator: development and validation of a tool for identifying African surgical patients at risk of severe postoperative complications
Background:
The African Surgical Outcomes Study (ASOS) showed that surgical patients in Africa have a mortality twice the global average. Existing risk assessment tools are not valid for use in this population because the pattern of risk for poor outcomes differs from high-income countries. The objective of this study was to derive and validate a simple, preoperative risk stratification tool to identify African surgical patients at risk for in-hospital postoperative mortality and severe complications.
Methods:
ASOS was a 7-day prospective cohort study of adult patients undergoing surgery in Africa. The ASOS Surgical Risk Calculator was constructed with a multivariable logistic regression model for the outcome of in-hospital mortality and severe postoperative complications. The following preoperative risk factors were entered into the model; age, sex, smoking status, ASA physical status, preoperative chronic comorbid conditions, indication for surgery, urgency, severity, and type of surgery.
Results:
The model was derived from 8799 patients from 168 African hospitals. The composite outcome of severe postoperative complications and death occurred in 423/8799 (4.8%) patients. The ASOS Surgical Risk Calculator includes the following risk factors: age, ASA physical status, indication for surgery, urgency, severity, and type of surgery. The model showed good discrimination with an area under the receiver operating characteristic curve of 0.805 and good calibration with c-statistic corrected for optimism of 0.784.
Conclusions:
This simple preoperative risk calculator could be used to identify high-risk surgical patients in African hospitals and facilitate increased postoperative surveillance.
© 2018 British Journal of Anaesthesia. Published by Elsevier Ltd. All rights reserved.Medical Research Council of South Africa gran