2 research outputs found

    Nuclear medicine imaging for bone metastases assessment: what else besides bone scintigraphy in the era of personalized medicine?

    No full text
    International audienceAccurate detection and reliable assessment of therapeutic responses in bone metastases are imperative for guiding treatment decisions, preserving quality of life, and ultimately enhancing overall survival. Nuclear imaging has historically played a pivotal role in this realm, offering a diverse range of radiotracers and imaging modalities. While the conventional bone scan using 99mTc marked bisphosphonates has remained widely utilized, its diagnostic performance is hindered by certain limitations. Positron emission tomography, particularly when coupled with computed tomography, provides improved spatial resolution and diagnostic performance with various pathology-specific radiotracers. This review aims to evaluate the performance of different nuclear imaging modalities in clinical practice for detecting and monitoring the therapeutic responses in bone metastases of diverse origins, addressing their limitations and implications for image interpretation.</jats:p

    18F-Fluorocholine PET/CT Compared with Current Imaging Procedures for Preoperative Localization of Hyperfunctioning Parathyroids in Patients with Chronic Kidney Disease

    No full text
    International audienceHyperparathyroidism (HPT) in patients with chronic kidney disease (CKD) includes secondary (sHPT) and tertiary hyperparathyroidism (tHPT). Considering that the role of preoperative imaging in the clinical setting is controversial, in the present study we have retrospectively compared pre-surgical diagnostic performances of 18F-Fluorocholine (18F-FCH) PET/CT, cervical ultrasonography (US), parathyroid scintigraphy, and 4D-CT in a group of 30 patients with CKD and HPT (18/12 sHPT/tHPT), 21 CKD G5 including 18 in dialysis, and 9 kidney transplant recipients. All patients underwent 18F-FCH, and 22 had cervical US, 12 had parathyroid scintigraphy, and 11 had 4D-CT. Histopathology was the gold standard. Seventy-four parathyroids were removed: 65 hyperplasia, 6 adenomas, and 3 normal glands. In the whole population, in a per gland analysis, 18F-FCH PET/CT was significantly more sensitive and accurate (72%, 71%) than neck US (25%, 43%), parathyroid scintigraphy (35%, 47%), and 4D-CT (40%, 47%). The specificity of 18F-FCH PET/CT (69%) was lower than that of neck US (95%) and parathyroid scintigraphy (90%), without, however, achieving significance. 18F-FCH PET/CT was more accurate than all other diagnostic techniques when sHPT and tHPT patients were considered separately. 18F-FCH PET/CT sensitivity was significantly higher in tHPT (88%) than in sHPT (66%). Three ectopic hyperfunctioning glands (in three different patients) were all detected by 18F-FCH PET/CT, two by parathyroid scintigraphy, and none by cervical US and 4D-CT. Our study confirms that 18F-FCH PET/CT is an effective preoperative imaging option in patients with CKD and HPT. These findings may be of greater importance in patients with tHPT (who could benefit from minimally invasive parathyroidectomy) than in patients with sHPT, who often undergo bilateral cervicotomy. In these cases, preoperative 18F-FCH PET/CT may be helpful in locating ectopic glands and may guide the surgical choice for gland preservation.</jats:p
    corecore