481 research outputs found

    Boojums in Rotating Two-Component Bose-Einstein Condensates

    Full text link
    A boojum is a topological defect that can form only on the surface of an ordered medium such as superfluid 3^3He and liquid crystals. We study theoretically boojums appearing between two phases with different vortex structures in two-component BECs where the intracomponent interaction is repulsive in one phase and attractive in the other. The detailed structure of the boojums is revealed by investigating its density distribution, effective superflow vorticity and pseudospin texture.Comment: 4 pages, 4 figure

    Vortex sheet in rotating two-component Bose-Einstein condensates

    Full text link
    We investigate vortex states of immiscible two-component Bose-Einstein condensates under rotation through numerical simulations of the coupled Gross-Pitaevskii equations. For strong intercomponent repulsion, the two components undergo phase separation to form several density domains of the same component. In the presence of the rotation, the nucleated vortices are aligned between the domains to make up winding chains of singly quantized vortices, a vortex sheet, instead of periodic vortex lattices. The vortices of one component are located at the region of the density domains of the other component, which results in the serpentine domain structure. The sheet configuration is stable as long as the imbalance of the intracomponent parameter is small. We employ a planar sheet model to estimate the distance between neighboring sheets, determined by the competition between the surface tension of the domain wall and the kinetic energy of the superflow via quantized vortices. By comparing the several length scales in this system, the phase diagram of the vortex state is obtained.Comment: 8 pages, 7 figure

    Disorderless quasi-localization of polar gases in one-dimensional lattices

    Full text link
    One-dimensional polar gases in deep optical lattices present a severely constrained dynamics due to the interplay between dipolar interactions, energy conservation, and finite bandwidth. The appearance of dynamically-bound nearest-neighbor dimers enhances the role of the 1/r31/r^3 dipolar tail, resulting, in the absence of external disorder, in quasi-localization via dimer clustering for very low densities and moderate dipole strengths. Furthermore, even weak dipoles allow for the formation of self-bound superfluid lattice droplets with a finite doping of mobile, but confined, holons. Our results, which can be extrapolated to other power-law interactions, are directly relevant for current and future lattice experiments with magnetic atoms and polar molecules.Comment: 5 + 2 Page

    Vortex Lattice Structures of a Bose-Einstein Condensate in a Rotating Lattice Potential

    Full text link
    We study vortex lattice structures of a trapped Bose-Einstein condensate in a rotating lattice potential by numerically solving the time-dependent Gross-Pitaevskii equation. By rotating the lattice potential, we observe the transition from the Abrikosov vortex lattice to the pinned lattice. We investigate the transition of the vortex lattice structure by changing conditions such as angular velocity, intensity, and lattice constant of the rotating lattice potential.Comment: 6 pages, 8 figures, submitted to Quantum Fluids and Solids Conference (QFS 2006

    Vortex phase diagram in rotating two-component Bose-Einstein condensates

    Full text link
    We investigate the structure of vortex states in rotating two-component Bose-Einstein condensates with equal intracomponent but varying intercomponent coupling constants. A phase diagram in the intercomponent-coupling versus rotation-frequency plane reveals rich equilibrium structures of vortex states. As the ratio of intercomponent to intracomponent couplings increases, the interlocked vortex lattices undergo phase transitions from triangular to square, to double-core lattices, and eventually develop interwoven "serpentine" vortex sheets with each component made up of chains of singly quantized vortices.Comment: 4 pages, 4 figures, revtex

    Non classical velocity statistics in a turbulent atomic Bose Einstein condensate

    Full text link
    In a recent experiment Paoletti et al (Phys. Rev. Lett. 101, 154501, 2008) monitored the motion of tracer particles in turbulent superfluid helium and inferred that the velocity components do not obey the Gaussian statistics observed in ordinary turbulence. Motivated by their experiment, we create a small turbulent state in an atomic Bose-Einstein condensate, which enables us to compute directly the velocity field, and we find similar non-classical power-law tails. Our result thus suggests that non-Gaussian turbulent velocity statistics describe a fundamental property of quantum fluids. We also track the decay of the vortex tangle in the presence of the thermal cloud.Comment: 10 pages, 3 figure

    Quantum Kelvin-Helmholtz instability in phase-separated two-component Bose-Einstein condensates

    Full text link
    We theoretically study the Kelvin-Helmholtz instability in phase-separated two-component Bose-Einstein condensates using the Gross-Pitaevskii and Bogoliubov-de Gennes models. A flat interface between the two condensates is shown to deform into sawtooth or Stokes-like waves, leading to the formation of singly quantized vortices on the peaks and troughs of the waves. This scenario of interface instability in quantum fluids is quite different from that in classical fluids.Comment: 5 pages, 4 figure

    Disorderless Quasi-localization of Polar Gases in One-Dimensional Lattices

    Get PDF
    One-dimensional polar gases in deep optical lattices present a severely constrained dynamics due to the interplay between dipolar interactions, energy conservation, and finite bandwidth. The appearance of dynamically bound nearest-neighbor dimers enhances the role of the 1/r3 dipolar tail, resulting in the absence of external disorder, in quasi-localization via dimer clustering for very low densities and moderate dipole strengths. Furthermore, even weak dipoles allow for the formation of self-bound superfluid lattice droplets with a finite doping of mobile, but confined, holons. Our results, which can be extrapolated to other power-law interactions, are directly relevant for current and future lattice experiments with magnetic atoms and polar molecules
    corecore