65 research outputs found

    Metallic ground state in an ion-gated two-dimensional superconductor

    Get PDF
    Recently emerging two-dimensional (2D) superconductors in atomically thin layers and at heterogeneous interfaces are attracting growing interest in condensed matter physics. Here, we report that an ion-gated zirconium nitride chloride surface, exhibiting a dome-shaped phase diagram with a maximum critical temperature of 14.8 kelvin, behaves as a superconductor persisting to the 2D limit. The superconducting thickness estimated from the upper critical fields is congruent to 1.8 nanometers, which is thinner than one unit-cell. The majority of the vortex phase diagram down to 2 kelvin is occupied by a metallic state with a finite resistance, owing to the quantum creep of vortices caused by extremely weak pinning and disorder. Our findings highlight the potential of electric-field-induced superconductivity, establishing a new platform for accessing quantum phases in clean 2D superconductors.</p

    Superconductivity protected by spin-valley locking in ion-gated MoS2

    Get PDF
    Symmetry-breaking has been known to play a key role in noncentrosymmetric superconductors with strong spin-orbit-interaction (SOI). The studies, however, have been so far mainly focused on a particular type of SOI, known as Rashba SOI, whereby the electron spin is locked to its momentum at a right-angle, thereby leading to an in-planar helical spin texture. Here we discuss electric-field-induced superconductivity in molybdenum disulphide (MoS2), which exhibits a fundamentally different type of intrinsic SOI manifested by an out-of-plane Zeeman-type spin polarization of energy valleys. We find an upper critical field of approximately 52 T at 1.5 K, which indicates an enhancement of the Pauli limit by a factor of four as compared to that in centrosymmetric conventional superconductors. Using realistic tight-binding calculations, we reveal that this unusual behaviour is due to an inter-valley pairing that is symmetrically protected by Zeeman-type spin-valley locking against external magnetic fields. Our study sheds a new light on the interplay of inversion asymmetry with SOI in confined geometries, and its unprecedented role in superconductivity.Comment: 37 pages, 11 figures, http://meetings.aps.org/Meeting/MAR15/Session/G11.1

    Comprehensive Behavioral Analysis of Calcium/Calmodulin-Dependent Protein Kinase IV Knockout Mice

    Get PDF
    Calcium-calmodulin dependent protein kinase IV (CaMKIV) is a protein kinase that activates the transcription factor CREB, the cyclic AMP-response element binding protein. CREB is a key transcription factor in synaptic plasticity and memory consolidation. To elucidate the behavioral effects of CaMKIV deficiency, we subjected CaMKIV knockout (CaMKIV KO) mice to a battery of behavioral tests. CaMKIV KO had no significant effects on locomotor activity, motor coordination, social interaction, pain sensitivity, prepulse inhibition, attention, or depression-like behavior. Consistent with previous reports, CaMKIV KO mice exhibited impaired retention in a fear conditioning test 28 days after training. In contrast, however, CaMKIV KO mice did not show any testing performance deficits in passive avoidance, one of the most commonly used fear memory paradigms, 28 days after training, suggesting that remote fear memory is intact. CaMKIV KO mice exhibited intact spatial reference memory learning in the Barnes circular maze, and normal spatial working memory in an eight-arm radial maze. CaMKIV KO mice also showed mildly decreased anxiety-like behavior, suggesting that CaMKIV is involved in regulating emotional behavior. These findings indicate that CaMKIV might not be essential for fear memory or spatial memory, although it is possible that the activities of other neural mechanisms or signaling pathways compensate for the CaMKIV deficiency

    LDL-C/HDL-C Ratio Predicts Carotid Intima-Media Thickness Progression Better Than HDL-C or LDL-C Alone

    Get PDF
    High-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) are strong predictors of atherosclerosis. Statin-induced changes in the ratio of LDL-C to HDL-C (LDL-C/HDL-C) predicted atherosclerosis progression better than LDL-C or HDL-C alone. However, the best predictor of subclinical atherosclerosis remains unknown. Our objective was to investigate this issue by measuring changes in carotid intima-media thickness (IMT). A total of 1,920 subjects received health examinations in 1999, and were followed up in 2007. Changes in IMT (follow-up IMT/baseline IMT × 100) were measured by ultrasonography. Our results showed that changes in IMT after eight years were significantly related to HDL-C (inversely, P < 0.05) and to LDL-C/HDL-C ratio (P < 0.05). When the LDL-C/HDL-C ratios were divided into quartiles, analysis of covariance showed that increases in the ratio were related to IMT progression (P < 0.05). This prospective study demonstrated the LDL-C/HDL-C ratio is a better predictor of IMT progression than HDL-C or LDL-C alone

    Pillar[6]arene acts as a biosensor for quantitative detection of a vitamin metabolite in crude biological samples

    Get PDF
    ビタミン代謝物を迅速定量できる超分子バイオセンサーを開発. 京都大学プレスリリース. 2020-12-09.Metabolic syndrome is associated with obesity, hypertension, and dyslipidemia, and increased cardiovascular risk. Therefore, quick and accurate measurements of specific metabolites are critical for diagnosis; however, detection methods are limited. Here we describe the synthesis of pillar[n]arenes to target 1-methylnicotinamide (1-MNA), which is one metabolite of vitamin B3 (nicotinamide) produced by the cancer-associated nicotinamide N-methyltransferase (NNMT). We found that water-soluble pillar[5]arene (P5A) forms host–guest complexes with both 1-MNA and nicotinamide, and water-soluble pillar[6]arene (P6A) selectively binds to 1-MNA at the micromolar level. P6A can be used as a “turn-off sensor” by photoinduced electron transfer (detection limit is 4.38 × 10−6 M). In our cell-free reaction, P6A is used to quantitatively monitor the activity of NNMT. Moreover, studies using NNMT-deficient mice reveal that P6A exclusively binds to 1-MNA in crude urinary samples. Our findings demonstrate that P6A can be used as a biosensor to quantify 1-MNA in crude biological samples

    Protocol for a Randomized, Crossover Trial : ISCHIA study

    Get PDF
    Objective: Intermittent-scanning continuous glucose monitoring (isCGM) is widely used in type 1 diabetes (T1D) patients; however, the education required to prevent hypoglycemia by using isCGM is not established. This study examines the combined effect of isCGM device usage and the education to reduce the time in hypoglycemia in comparison to conventional self-monitoring of blood glucose (SMBG). Methods: The Effect of Intermittent-Scanning Continuous Glucose Monitoring to Glycemic Control Including Hypoglycemia and Quality of Life of Patients with Type 1 Diabetes Mellitus Study (ISCHIA Study), a randomized, crossover trial, enrolls 104 T1D patients (age, 20-74 years) with T1D. Participants are randomized to use isCGM combined with structured education (Intervention period) or SMBG (Control period) for 84 days, followed by the other for a further 84 days. During the Intervention period, participants have access to the sensor glucose levels and trend arrow of the device. During the Control period, participants conduct SMBG at least three times a day, and retrospective CGM is used to record the blinded sensor glucose levels. The primary endpoint is the decrease of time in hypoglycemia ( < 70 mg/dL) per day (hour/day) during the Intervention period compared with the Control period. The secondary endpoints include other indices of glycemic control, glycoalbumin, accuracy of isCGM, diabetes-related quality of life (QOL), adherence, and cost-effectiveness. The study protocol has received Certified Review Board (CRB) approval from National Hospital Organization Osaka National Hospital (N2018002, February 14, 2019). This study is carried out in accordance with the Declaration of Helsinki and the Clinical Trials Act. The findings will be published in peer-reviewed journals. Conclusion: The ISCHIA study will contribute to the standardization of patient education regarding the prevention of hypoglycemia by using isCGM
    corecore