954 research outputs found
Fertilization Recovery after Defective Sperm Cell Release in Arabidopsis
SummaryIn animal fertilization, multiple sperms typically arrive at an egg cell to “win the race” for fertilization. However, in flowering plants, only one of many pollen tubes, conveying plant sperm cells, usually arrives at each ovule that harbors an egg cell [1, 2]. Plant fertilization has thus been thought to depend on the fertility of a single pollen tube [1]. Here we report a fertilization recovery phenomenon in flowering plants that actively rescues the failure of fertilization of the first mutant pollen tube by attracting a second, functional pollen tube. Wild-type (WT) ovules of Arabidopsis thaliana frequently (∼80%) accepted two pollen tubes when entered by mutant pollen defective in gamete fertility. In typical flowering plants, two synergid cells on the side of the egg cell attract pollen tubes [3–5], one of which degenerates upon pollen tube discharge [3, 6]. By semi-in vitro live-cell imaging [7, 8] we observed that fertilization was rescued when the second synergid cell accepted a WT pollen tube. Our results suggest that flowering plants precisely control the number of pollen tubes that arrive at each ovule and employ a fertilization recovery mechanism to maximize the likelihood of successful seed set
Recommended from our members
Role of the Adiponectin Binding Protein, T-Cadherin (cdh13), in Pulmonary Responses to Subacute Ozone
Adiponectin, an adipose derived hormone with pleiotropic functions, binds to several proteins, including T-cadherin. We have previously reported that adiponectin deficient (Adipo−/−) mice have increased IL-17A-dependent neutrophil accumulation in their lungs after subacute exposure to ozone (0.3 ppm for 72 hrs). The purpose of this study was to determine whether this anti-inflammatory effect of adiponectin required adiponectin binding to T-cadherin. Wildtype, Adipo−/−, T-cadherin deficient (T-cad−/−), and bideficient (Adipo−/−/T-cad−/−) mice were exposed to subacute ozone or air. Compared to wildtype mice, ozone-induced increases in pulmonary IL-17A mRNA expression were augmented in T-cad−/− and Adipo−/− mice. Compared to T-cad−/− mice, there was no further increase in IL-17A in Adipo−/−/T-cad−/− mice, indicating that adiponectin binding to T-cadherin is required for suppression of ozone-induced IL-17A expression. Similar results were obtained for pulmonary mRNA expression of saa3, an acute phase protein capable of inducing IL-17A expression. Comparison of lung histological sections across genotypes also indicated that adiponectin attenuation of ozone-induced inflammatory lesions at bronchiolar branch points required T-cadherin. BAL neutrophils and G-CSF were augmented in T-cad−/− mice and further augmented in Adipo−/−/T-cad−/− mice. Taken together with previous observations indicating that augmentation of these moieties in ozone exposed Adipo−/− mice is partially IL-17A dependent, the results indicate that effects of T-cadherin deficiency on BAL neutrophils and G-CSF are likely secondary to changes in IL-17A, but that adiponectin also acts via T-cadherin independent pathways. Our results indicate that T-cadherin is required for the ability of adiponectin to suppress some but not all aspects of ozone-induced pulmonary inflammation
Acrolein exposure suppresses antigen-induced pulmonary inflammation
Background: Adverse health effects of tobacco smoke arise partly from its influence on innate and adaptive immune responses, leading to impaired innate immunity and host defense. The impact of smoking on allergic asthma remains unclear, with various reports demonstrating that cigarette smoke enhances asthma development but can also suppress allergic airway inflammation. Based on our previous findings that immunosuppressive effects of smoking may be largely attributed to one of its main reactive electrophiles, acrolein, we explored the impact of acrolein exposure in a mouse model of ovalbumin (OVA)-induced allergic asthma. Methods: C57BL/6 mice were sensitized to ovalbumin (OVA) by intraperitoneal injection with the adjuvant aluminum hydroxide on days 0 and 7, and challenged with aerosolized OVA on days 14–16. In some cases, mice were also exposed to 5 ppm acrolein vapor for 6 hrs/day on days 14–17. Lung tissues or brochoalveolar lavage fluids (BALF) were collected either 6 hrs after a single initial OVA challenge and/or acrolein exposure on day 14 or 48 hrs after the last OVA challenge, on day 18. Inflammatory cells and Th1/Th2 cytokine levels were measured in BALF, and lung tissue samples were collected for analysis of mucus and Th1/Th2 cytokine expression, determination of protein alkylation, cellular thiol status and transcription factor activity. Results: Exposure to acrolein following OVA challenge of OVA-sensitized mice resulted in markedly attenuated allergic airway inflammation, demonstrated by decreased inflammatory cell infiltrates, mucus hyperplasia and Th2 cytokines. Acrolein exposure rapidly depleted lung tissue glutathione (GSH) levels, and induced activation of the Nrf2 pathway, indicated by accumulation of Nrf2, increased alkylation of Keap1, and induction of Nrf2-target genes such as HO-1. Additionally, analysis of inflammatory signaling pathways showed suppressed activation of NF-κB and marginally reduced activation of JNK in acrolein-exposed lungs, associated with increased carbonylation of RelA and JNK. Conclusion: Acrolein inhalation suppresses Th2-driven allergic inflammation in sensitized animals, due to direct protein alkylation resulting in activation of Nrf2 and anti-inflammatory gene expression, and inhibition of NF-κB or JNK signaling. Our findings help explain the paradoxical anti-inflammatory effects of cigarette smoke exposure in allergic airways disease
Recommended from our members
Augmented Pulmonary Responses to Acute Ozone Exposure in Obese Mice: Roles of TNFR2 and IL-13
Background: Acute ozone (O3) exposure results in greater inflammation and airway hyperresponsiveness (AHR) in obese versus lean mice. Objectives: We examined the hypothesis that these augmented responses to O3 are the result of greater signaling through tumor necrosis factor receptor 2 (TNFR2) and/or interleukin (IL)-13. Methods: We exposed lean wild-type (WT) and TNFR2-deficient (TNFR2–/–) mice, and obese Cpefat and TNFR2-deficient Cpefat mice (Cpefat/TNFR2–/–), to O3 (2 ppm for 3 hr) either with or without treatment with anti–IL-13 or left them unexposed. Results: O3-induced increases in baseline pulmonary mechanics, airway responsiveness, and cellular inflammation were greater in Cpefat than in WT mice. In lean mice, TNFR2 deficiency ablated O3-induced AHR without affecting pulmonary inflammation; whereas in obese mice, TNFR2 deficiency augmented O3-induced AHR but reduced inflammatory cell recruitment. O3 increased pulmonary expression of IL-13 in Cpefat but not WT mice. Flow cytometry analysis of lung cells indicated greater IL-13–expressing CD4+ cells in Cpefat versus WT mice after O3 exposure. In Cpefat mice, anti–IL-13 treatment attenuated O3-induced increases in pulmonary mechanics and inflammatory cell recruitment, but did not affect AHR. These effects of anti–IL-13 treatment were not observed in Cpefat/TNFR2–/– mice. There was no effect of anti–IL-13 treatment in WT mice. Conclusions: Pulmonary responses to O3 are not just greater, but qualitatively different, in obese versus lean mice. In particular, in obese mice, O3 induces IL-13 and IL-13 synergizes with TNF via TNFR2 to exacerbate O3-induced changes in pulmonary mechanics and inflammatory cell recruitment but not AHR
γδ T Cells Are Required for Pulmonary IL-17A Expression after Ozone Exposure in Mice: Role of TNFα
Ozone is an air pollutant that causes pulmonary symptoms. In mice, ozone exposure causes pulmonary injury and increases bronchoalveolar lavage macrophages and neutrophils. We have shown that IL-17A is important in the recruitment of neutrophils after subacute ozone exposure (0.3 ppm for 24–72 h). We hypothesized that γδ T cells are the main producers of IL-17A after subacute ozone. To explore this hypothesis we exposed wildtype mice and mice deficient in γδ T cells (TCRδ−/−) to ozone or room air. Ozone-induced increases in BAL macrophages and neutrophils were attenuated in TCRδ−/− mice. Ozone increased the number of γδ T cells in the lungs and increased pulmonary Il17a mRNA expression and the number of IL-17A+ CD45+ cells in the lungs and these effects were abolished in TCRδ−/− mice. Ozone-induced increases in factors downstream of IL-17A signaling, including G-CSF, IL-6, IP-10 and KC were also decreased in TCRδ−/− versus wildtype mice. Neutralization of IL-17A during ozone exposure in wildtype mice mimicked the effects of γδ T cell deficiency. TNFR2 deficiency and etanercept, a TNFα antagonist, also reduced ozone-induced increases in Il17a mRNA, IL-17A+ CD45+ cells and BAL G-CSF as well as BAL neutrophils. TNFR2 deficient mice also had decreased ozone-induced increases in Ccl20, a chemoattractant for IL-17A+ γδ T cells. Il17a mRNA and IL-17A+ γδ T cells were also lower in obese Cpefat versus lean WT mice exposed to subacute ozone, consistent with the reduced neutrophil recruitment observed in the obese mice. Taken together, our data indicate that pulmonary inflammation induced by subacute ozone requires γδ T cells and TNFα-dependent recruitment of IL-17A+ γδ T cells to the lung
Recommended from our members
Role of the Adiponectin Binding Protein, T-Cadherin (Cdh13), in Allergic Airways Responses in Mice
Adiponectin is an adipose derived hormone that declines in obesity. We have previously shown that exogenous administration of adiponectin reduces allergic airways responses in mice. T-cadherin (T-cad; Cdh13) is a binding protein for the high molecular weight isoforms of adiponectin. To determine whether the beneficial effects of adiponectin on allergic airways responses require T-cad, we sensitized wildtype (WT), T-cadherin deficient (T-cad−/−) and adiponectin and T-cad bideficient mice to ovalbumin (OVA) and challenged the mice with aerosolized OVA or PBS. Compared to WT, T-cad−/− mice were protected against OVA-induced airway hyperresponsiveness, increases in BAL inflammatory cells, and induction of IL-13, IL-17, and eotaxin expression. Histological analysis of the lungs of OVA-challenged T-cad−/− versus WT mice indicated reduced inflammation around the airways, and reduced mucous cell hyperplasia. Combined adiponectin and T-cad deficiency reversed the effects of T-cad deficiency alone, indicating that the observed effects of T-cad deficiency require adiponectin. Compared to WT, serum adiponectin was markedly increased in T-cad−/− mice, likely because adiponectin that is normally sequestered by endothelial T-cad remains free in the circulation. In conclusion, T-cad does not mediate the protective effects of adiponectin. Instead, mice lacking T-cad have reduced allergic airways disease, likely because elevated serum adiponectin levels act on other adiponectin signaling pathways
IL-13 Augments Compressive Stress–Induced Tissue Factor Expression in Human Airway Epithelial Cells
Tissue factor (TF) is best known as a cellular initiator of coagulation, but it is also a multifunctional protein that has been implicated in multiple pathophysiologic conditions, including asthma. In the lung, airway epithelial cells express TF, but it is unknown how TF expression is regulated by asthma-associated mediators. We investigated the role of IL-13, a type 2 cytokine, alone and in combination with compressive stress, which mimics asthmatic bronchoconstriction, on TF expression and release of TF-positive extracellular vesicles from primary normal human bronchial epithelial cells. Well-differentiated normal human bronchial epithelial cells were treated with IL-13 and compressive stress, alone and in combination. TF mRNA, protein and activity were measured in the cells and conditioned media. TF was also measured in the bronchoalveolar lavage (BAL) fluid of allergen-challenged mice and patients with asthma. IL-13 and compressive stress increased TF expression, but only compressive stress induced TF-positive extracellular vesicle release. Pretreatment with IL-13 augmented compressive stress–induced TF expression and release. TF protein and activity in BAL fluid were increased in allergen-sensitized and -challenged mice. TF was elevated in the BAL fluid of patients with mild asthma after an allergen challenge. Our in vitro and in vivo data indicate close cooperation between mechanical and inflammatory stimuli on TF expression and release of TF-positive extracellular vesicles in the lungs, which may contribute to pathophysiology of asthma
Expression of Sumoylation Deficient Nkx2.5 Mutant in Nkx2.5 Haploinsufficient Mice Leads to Congenital Heart Defects
Nkx2.5 is a cardiac specific homeobox gene critical for normal heart development. We previously identified Nkx2.5 as a target of sumoylation, a posttranslational modification implicated in a variety of cellular activities. Sumoylation enhanced Nkx2.5 activity via covalent attachment to the lysine residue 51, the primary SUMO acceptor site. However, how sumoylation regulates the activity of Nkx2.5 in vivo remains unknown. We generated transgenic mice overexpressing sumoylation deficient mutant K51R (conversion of lysine 51 to arginine) specifically in mouse hearts under the control of cardiac α-myosin heavy chain (α-MHC) promoter (K51R-Tg). Expression of the Nkx2.5 mutant transgene in the wild type murine hearts did not result in any overt cardiac phenotype. However, in the presence of Nkx2.5 haploinsufficiency, cardiomyocyte-specific expression of the Nkx2.5 K51R mutant led to congenital heart diseases (CHDs), accompanied with decreased cardiomyocyte proliferation. Also, a number of human CHDs-associated Nkx2.5 mutants exhibited aberrant sumoylation. Our work demonstrates that altered sumoylation status may underlie the development of human CHDs associated with Nkx2.5 mutants
Comparison of Isolated or Combined Static Stretching and Foam Rolling on Knee Extensors’ Function
Static stretching (SS), foam rolling (FR), and a combination of both are used as warm-ups for sports and training. However, no reports have compared or examined the warm-up effects of short-term interventions (i.e., 30-s). Therefore, this study was designed to compare and examine the effects of short-term SS, FR, and SS+FR on knee extensors. The dominant knee extensors of 14 male university students (22.0 ± 1.3 years old) were tested. Five conditions were randomized: 60-s SS, 60-s FR, 30-s SS+ 30-s FR, 30-s SS, and 30-s FR to examine differences in intervention method, duration, and combined. The measures were knee flexion range of motion (ROM), pain pressure threshold (PPT), tissue hardness, maximum voluntary contraction-isometric (MVC-ISO), and MVC-concentric (MVC-CON) torques, measured before and after the intervention. Knee flexion ROM (d = 0.40, d = 0.59, d = 0.54, d = 0.59, d = 0.52 respectively) and PPT (d = 0.77, d = 0.60, d = 0.90, d = 0.74, d = 0.52, respectively) were significantly increased (p < 0.01), and tissue hardness (d = -0.79, d = -0.63, d = -0.53, d = -0.59, d = -0.72, respectively) was significantly decreased (p < 0.01) in all conditions. However, MVC-ISO decreased significantly (p < 0.01) in the 60-s SS and 30-s SS conditions but did not affect MVC-CON in all conditions. The results of this study revealed that SS, FR, and SS+FR interventions for a short-term as a warm-up before exercise were effective in increasing ROM, PPT, and decreasing tissue hardness. However, SS intervention with more than 30-s on the knee extensors decreased muscle strength, so short-term FR intervention is recommended when the goal is to increase ROM while maintaining both MVC-ISO and MVC-CON torques. Similarly, a short-term FR intervention after a short-term SS can eliminate the effect of strength impairments
- …